Research Advance in Harmful Effects and Removal of Impurity Fe from Al and Al Alloys

2011 ◽  
Vol 295-297 ◽  
pp. 751-759 ◽  
Author(s):  
Hua Shen ◽  
Wei Dong Yang ◽  
He Liang ◽  
Guang Chun Yao

The presence of Fe and harmful effects on mechanical properties of pure aluminum and aluminum alloys are introduced. Several purification methods are reviewed, but all of them are of definite limitations. It is effective that precipitation method, filtration method and centrifugal division method are integrated.

2014 ◽  
Vol 66 (4) ◽  
pp. 520-524 ◽  
Author(s):  
Serkan Büyükdoğan ◽  
Süleyman Gündüz ◽  
Mustafa Türkmen

Purpose – The paper aims to provide new observations about static strain ageing in aluminium (Al) alloys which are widely used in structural applications. Design/methodology/approach – The present work aims to provide theoretical and practical information to industries or researchers who may be interested in the effect of static strain ageing on mechanical properties of Al alloys. The data are sorted into the following sections: introduction, materials and experimental procedure, results and discussion and conclusions. Findings – Tensile strength, proof strength (0.2 per cent) and percentage elongation measurement were used to investigate the effect of strain ageing on the mechanical properties. Wear tests were performed by sliding the pin specimens, which were prepared from as-received, solution heat-treated, deformed and undeformed specimens after ageing, on high-speed tool steel (64 HRC). It is concluded that the variations in ageing time improved the strength and wear resistance of the 6063 Al alloy; however, a plastically deformed solution-treated alloy has higher strength and wear resistance than undeformed specimens for different ageing times at 180°C. Practical implications – A very useful source of information for industries using or planning to produce Al alloys. Originality/value – This paper fulfils an identified resource need and offers practical help to the industries.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1677
Author(s):  
Hooi Peng Lim ◽  
Willey Yun Hsien Liew ◽  
Gan Jet Hong Melvin ◽  
Zhong-Tao Jiang

This paper reviews the phase structures and oxidation kinetics of complex Ti-Al alloys at oxidation temperatures in the range of 600–1000 °C. The mass gain and parabolic rate constants of the alloys under isothermal exposure at 100 h (or equivalent to cyclic exposure for 300 cycles) is compared. Of the alloying elements investigated, Si appeared to be the most effective in improving the oxidation resistance of Ti-Al alloys at high temperatures. The effect of alloying elements on the mechanical properties of Ti-Al alloys is also discussed. Significant improvement of the mechanical properties of Ti-Al alloys by element additions has been observed through the formation of new phases, grain refinement, and solid solution strengthening.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3675
Author(s):  
A. Muthuchamy ◽  
Muthe Srikanth ◽  
Dinesh K. Agrawal ◽  
A. Raja Annamalai

In this research, we intended to examine the effect of heating mode on the densification, microstructure, mechanical properties, and corrosion resistance of sintered aluminum alloys. The compacts were sintered in conventional (radiation-heated) and microwave (2.45 GHz, multimode) sintering furnaces followed by aging. Detailed analysis of the final sintered aluminum alloys was done using optical and scanning electron microscopes. The observations revealed that the microwave sintered sample has a relatively finer microstructure compared to its conventionally sintered counterparts. The experimental results also show that microwave sintered alloy has the best mechanical properties over conventionally sintered compacts. Similarly, the microwave sintered samples showed better corrosion resistance than conventionally sintered ones.


2021 ◽  
Vol 146 ◽  
pp. 106165
Author(s):  
Muztahid Muhammad ◽  
P.D. Nezhadfar ◽  
Spencer Thompson ◽  
Ankit Saharan ◽  
Nam Phan ◽  
...  

2013 ◽  
Vol 404 ◽  
pp. 3-9 ◽  
Author(s):  
Nihat Tosun ◽  
Ihsan Dagtekin ◽  
Latif Ozler ◽  
Ahmet Deniz

Abrasive waterjet machining is one of the non-traditional methods of the recent years which found itself a wide area of application in the industry for machining of different materials. In this paper, the surface roughness of 6061-T6 and 7075-T6 aluminum alloys are being cut with abrasive waterjet is examined experimentally. The experiments were conducted with different waterjet pressures and traverse speeds. It has been found that the surface roughness obtained by cutting material with high mechanical properties is better than that of obtained by cutting material with inferior mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document