scholarly journals Outer independent rainbow dominating functions in graphs

2020 ◽  
Vol 40 (5) ◽  
pp. 599-615
Author(s):  
Zhila Mansouri ◽  
Doost Ali Mojdeh

A 2-rainbow dominating function (2-rD function) of a graph \(G=(V,E)\) is a function \(f:V(G)\rightarrow\{\emptyset,\{1\},\{2\},\{1,2\}\}\) having the property that if \(f(x)=\emptyset\), then \(f(N(x))=\{1,2\}\). The 2-rainbow domination number \(\gamma_{r2}(G)\) is the minimum weight of \(\sum_{v\in V(G)}|f(v)|\) taken over all 2-rainbow dominating functions \(f\). An outer-independent 2-rainbow dominating function (OI2-rD function) of a graph \(G\) is a 2-rD function \(f\) for which the set of all \(v\in V(G)\) with \(f(v)=\emptyset\) is independent. The outer independent 2-rainbow domination number \(\gamma_{oir2}(G)\) is the minimum weight of an OI2-rD function of \(G\). In this paper, we study the OI2-rD number of graphs. We give the complexity of the problem OI2-rD of graphs and present lower and upper bounds on \(\gamma_{oir2}(G)\). Moreover, we characterize graphs with some small or large OI2-rD numbers and we also bound this parameter from above for trees in terms of the order, leaves and the number of support vertices and characterize all trees attaining the bound. Finally, we show that any ordered pair \((a,b)\) is realizable as the vertex cover number and OI2-rD numbers of some non-trivial tree if and only if \(a+1\leq b\leq 2a\).

2019 ◽  
Vol 53 (2) ◽  
pp. 627-643 ◽  
Author(s):  
Hong Yang ◽  
Pu Wu ◽  
Sakineh Nazari-Moghaddam ◽  
Seyed Mahmoud Sheikholeslami ◽  
Xiaosong Zhang ◽  
...  

Let k ≥ 1 be an integer and G be a simple and finite graph with vertex set V(G). A signed double Roman k-dominating function (SDRkDF) on a graph G is a function f:V(G) → {−1,1,2,3} such that (i) every vertex v with f(v) = −1 is adjacent to at least two vertices assigned a 2 or to at least one vertex w with f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent to at least one vertex w with f(w) ≥ 2 and (iii) ∑u∈N[v]f(u) ≥ k holds for any vertex v. The weight of a SDRkDF f is ∑u∈V(G) f(u), and the minimum weight of a SDRkDF is the signed double Roman k-domination number γksdR(G) of G. In this paper, we investigate the signed double Roman k-domination number of trees. In particular, we present lower and upper bounds on γksdR(T) for 2 ≤ k ≤ 6 and classify all extremal trees.


Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.


Author(s):  
L. Shahbazi ◽  
H. Abdollahzadeh Ahangar ◽  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be an integer, and let [Formula: see text] be a graph. A k-rainbow dominating function (or [Formula: see text]RDF) of [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the family of all subsets of [Formula: see text] such that for very [Formula: see text] with [Formula: see text], the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] of [Formula: see text] is the value [Formula: see text]. A k-rainbow dominating function [Formula: see text] in a graph with no isolated vertex is called a total k-rainbow dominating function if the subgraph of [Formula: see text] induced by the set [Formula: see text] has no isolated vertices. The total k-rainbow domination number of [Formula: see text], denoted by [Formula: see text], is the minimum weight of the total [Formula: see text]-rainbow dominating function on [Formula: see text]. The total k-rainbow reinforcement number of [Formula: see text], denoted by [Formula: see text], is the minimum number of edges that must be added to [Formula: see text] in order to decrease the total k-rainbow domination number. In this paper, we investigate the properties of total [Formula: see text]-rainbow reinforcement number in graphs. In particular, we present some sharp bounds for [Formula: see text] and we determine the total [Formula: see text]-rainbow reinforcement number of some classes of graphs including paths, cycles and complete bipartite graphs.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 203 ◽  
Author(s):  
Ying Wang ◽  
Xinling Wu ◽  
Nasrin Dehgardi ◽  
Jafar Amjadi ◽  
Rana Khoeilar ◽  
...  

Let k be a positive integer, and set [ k ] : = { 1 , 2 , … , k } . For a graph G, a k-rainbow dominating function (or kRDF) of G is a mapping f : V ( G ) → 2 [ k ] in such a way that, for any vertex v ∈ V ( G ) with the empty set under f, the condition ⋃ u ∈ N G ( v ) f ( u ) = [ k ] always holds, where N G ( v ) is the open neighborhood of v. The weight of kRDF f of G is the summation of values of all vertices under f. The k-rainbow domination number of G, denoted by γ r k ( G ) , is the minimum weight of a kRDF of G. In this paper, we obtain the k-rainbow domination number of grid P 3 □ P n for k ∈ { 2 , 3 , 4 } .


2017 ◽  
Vol 10 (01) ◽  
pp. 1750004 ◽  
Author(s):  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be a finite and simple digraph. A [Formula: see text]-rainbow dominating function ([Formula: see text]RDF) of a digraph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the set of in-neighbors of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a digraph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a [Formula: see text]RDF of [Formula: see text]. The [Formula: see text]-rainbow reinforcement number [Formula: see text] of a digraph [Formula: see text] is the minimum number of arcs that must be added to [Formula: see text] in order to decrease the [Formula: see text]-rainbow domination number. In this paper, we initiate the study of [Formula: see text]-rainbow reinforcement number in digraphs and we present some sharp bounds for [Formula: see text]. In particular, we determine the [Formula: see text]-rainbow reinforcement number of some classes of digraphs.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1860
Author(s):  
Rija Erveš ◽  
Janez Žerovnik

We obtain new results on 3-rainbow domination numbers of generalized Petersen graphs P(6k,k). In some cases, for some infinite families, exact values are established; in all other cases, the lower and upper bounds with small gaps are given. We also define singleton rainbow domination, where the sets assigned have a cardinality of, at most, one, and provide analogous results for this special case of rainbow domination.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650018 ◽  
Author(s):  
N. Dehgardi ◽  
M. Falahat ◽  
S. M. Sheikholeslami ◽  
Abdollah Khodkar

A [Formula: see text]-rainbow dominating function (2RDF) of a graph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a 2RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a 2RDF of G. The [Formula: see text]-rainbow domination subdivision number [Formula: see text] is the minimum number of edges that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the 2-rainbow domination number. It is conjectured that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text]. In this paper, we first prove this conjecture for some classes of graphs and then we prove that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text].


Filomat ◽  
2014 ◽  
Vol 28 (3) ◽  
pp. 615-622 ◽  
Author(s):  
Mohyedin Falahat ◽  
Seyed Sheikholeslami ◽  
Lutz Volkmann

A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set {1,2} such that for any vertex v ? V(G) with f (v) = ? the condition Uu?N(v) f(u)= {1,2} is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the value ?(f) = ?v?V |f(v)|. The 2-rainbow domination number of a graph G, denoted by r2(G), is the minimum weight of a 2RDF of G. The 2-rainbow domination subdivision number sd?r2(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the 2-rainbow domination number. In this paper we prove that for every simple connected graph G of order n ? 3, sd?r2(G)? 3 + min{d2(v)|v?V and d(v)?2} where d2(v) is the number of vertices of G at distance 2 from v.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 65
Author(s):  
Hong Gao ◽  
Changqing Xi ◽  
Yuansheng Yang

We have studied the k-rainbow domination number of C n □ C m for k ≥ 4 (Gao et al. 2019), in which we present the 3-rainbow domination number of C n □ C m , which should be bounded above by the four-rainbow domination number of C n □ C m . Therefore, we give a rough bound on the 3-rainbow domination number of C n □ C m . In this paper, we focus on the 3-rainbow domination number of the Cartesian product of cycles, C n □ C m . A 3-rainbow dominating function (3RDF) f on a given graph G is a mapping from the vertex set to the power set of three colors { 1 , 2 , 3 } in such a way that every vertex that is assigned to the empty set has all three colors in its neighborhood. The weight of a 3RDF on G is the value ω ( f ) = ∑ v ∈ V ( G ) | f ( v ) | . The 3-rainbow domination number, γ r 3 ( G ) , is the minimum weight among all weights of 3RDFs on G. In this paper, we determine exact values of the 3-rainbow domination number of C 3 □ C m and C 4 □ C m and present a tighter bound on the 3-rainbow domination number of C n □ C m for n ≥ 5 .


2020 ◽  
Vol 54 (4) ◽  
pp. 1077-1086
Author(s):  
Arezoo N. Ghameshlou ◽  
Athena Shaminezhad ◽  
Ebrahim Vatandoost ◽  
Abdollah Khodkar

Let G = (V, E) be a graph. The function f : V(G) → {−1, 1} is a signed dominating function if for every vertex v ∈ V(G), ∑x∈NG[v] f(x)≥1. The value of ω(f) = ∑x∈V(G) f(x) is called the weight of f. The signed domination number of G is the minimum weight of a signed dominating function of G. In this paper, we initiate the study of the signed domination numbers of Mycielski graphs and find some upper bounds for this parameter. We also calculate the signed domination number of the Mycielski graph when the underlying graph is a star, a wheel, a fan, a Dutch windmill, a cycle, a path or a complete bipartite graph.


Sign in / Sign up

Export Citation Format

Share Document