scholarly journals Total connected domination game

2021 ◽  
Vol 41 (4) ◽  
pp. 453-464
Author(s):  
Csilla Bujtás ◽  
Michael A. Henning ◽  
Vesna Iršič ◽  
Sandi Klavžar

The (total) connected domination game on a graph \(G\) is played by two players, Dominator and Staller, according to the standard (total) domination game with the additional requirement that at each stage of the game the selected vertices induce a connected subgraph of \(G\). If Dominator starts the game and both players play optimally, then the number of vertices selected during the game is the (total) connected game domination number (\(\gamma_{\rm tcg}(G)\)) \(\gamma_{\rm cg}(G)\) of \(G\). We show that \(\gamma_{\rm tcg}(G) \in \{\gamma_{\rm cg}(G),\gamma_{\rm cg}(G) + 1,\gamma_{\rm cg}(G) + 2\}\), and consequently define \(G\) as Class \(i\) if \(\gamma_{\rm tcg}(G) = \gamma_{\rm cg} + i\) for \(i \in \{0,1,2\}\). A large family of Class \(0\) graphs is constructed which contains all connected Cartesian product graphs and connected direct product graphs with minumum degree at least \(2\). We show that no tree is Class \(2\) and characterize Class \(1\) trees. We provide an infinite family of Class \(2\) bipartite graphs.

2019 ◽  
Vol 17 (1) ◽  
pp. 1269-1280 ◽  
Author(s):  
Csilla Bujtás ◽  
Pakanun Dokyeesun ◽  
Vesna Iršič ◽  
Sandi Klavžar

Abstract The connected domination game on a graph G is played by Dominator and Staller according to the rules of the standard domination game with the additional requirement that at each stage of the game the selected vertices induce a connected subgraph of G. If Dominator starts the game and both players play optimally, then the number of vertices selected during the game is the connected game domination number of G. Here this invariant is studied on Cartesian product graphs. A general upper bound is proved and demonstrated to be sharp on Cartesian products of stars with paths or cycles. The connected game domination number is determined for Cartesian products of P3 with arbitrary paths or cycles, as well as for Cartesian products of an arbitrary graph with Kk for the cases when k is relatively large. A monotonicity theorem is proved for products with one complete factor. A sharp general lower bound on the connected game domination number of Cartesian products is also established.


2019 ◽  
Vol 13 (1) ◽  
pp. 261-289 ◽  
Author(s):  
Mieczysław Borowiecki ◽  
Anna Fiedorowicz ◽  
Elżbieta Sidorowicz

In this paper we introduce a domination game based on the notion of connected domination. Let G = (V,E) be a connected graph of order at least 2. We define a connected domination game on G as follows: The game is played by two players, Dominator and Staller. The players alternate taking turns choosing a vertex of G (Dominator starts). A move of a player by choosing a vertex v is legal, if (1) the vertex v dominates at least one additional vertex that was not dominated by the set of previously chosen vertices and (2) the set of all chosen vertices induces a connected subgraph of G. The game ends when none of the players has a legal move (i.e., G is dominated). The aim of Dominator is to finish as soon as possible, Staller has an opposite aim. Let D be the set of played vertices obtained at the end of the connected domination game (D is a connected dominating set of G). The connected game domination number of G, denoted cg(G), is the minimum cardinality of D, when both players played optimally on G. We provide an upper bound on cg(G) in terms of the connected domination number. We also give a tight upper bound on this parameter for the class of 2-trees. Next, we investigate the Cartesian product of a complete graph and a tree, and we give exact values of the connected game domination number for such a product, when the tree is a path or a star. We also consider some variants of the game, in particular, a Staller-start game.


10.37236/2535 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
K. Choudhary ◽  
S. Margulies ◽  
I. V. Hicks

A dominating set $D$ for a graph $G$ is a subset of $V(G)$ such that any vertex not in $D$ has at least one neighbor in $D$. The domination number $\gamma(G)$ is the size of a minimum dominating set in G. Vizing's conjecture from 1968 states that for the Cartesian product of graphs $G$ and $H$, $\gamma(G)\gamma(H) \leq \gamma(G \Box H)$, and Clark and Suen (2000) proved that $\gamma(G)\gamma(H) \leq 2 \gamma(G \Box H)$. In this paper, we modify the approach of Clark and Suen to prove a variety of similar bounds related to total and paired domination, and also extend these bounds to the $n$-Cartesian product of graphs $A^1$ through $A^n$.


2019 ◽  
Vol 13 (07) ◽  
pp. 2050129
Author(s):  
Karnchana Charoensitthichai ◽  
Chalermpong Worawannotai

The total domination game is played on a graph [Formula: see text] by two players, named Dominator and Staller. They alternately select vertices of [Formula: see text]; each chosen vertex totally dominates its neighbors. In this game, each chosen vertex must totally dominates at least one new vertex not totally dominated before. The game ends when all vertices in [Formula: see text] are totally dominated. Dominator’s goal is to finish the game as soon as possible, and Staller’s goal is to prolong it as much as possible. The game total domination number is the number of chosen vertices when both players play optimally, denoted by [Formula: see text] when Dominator starts the game and denoted by [Formula: see text] when Staller starts the game. In this paper, we show that for any graph [Formula: see text] and a vertex [Formula: see text], where [Formula: see text] has no isolated vertex, we have [Formula: see text] and [Formula: see text]. Moreover, all such differences can be realized by some connected graphs.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Boštjan Brešar ◽  
Sandi Klavžar ◽  
Gasper Košmrlj ◽  
Doug F. Rall

Graph Theory International audience We introduce the concept of guarded subgraph of a graph, which as a condition lies between convex and 2-isometric subgraphs and is not comparable to isometric subgraphs. Some basic metric properties of guarded subgraphs are obtained, and then this concept is applied to the domination game. In this game two players, Dominator and Staller, alternate choosing vertices of a graph, one at a time, such that each chosen vertex enlarges the set of vertices dominated so far. The aim of Dominator is that the graph is dominated in as few steps as possible, while the aim of Staller is just the opposite. The game domination number is the number of vertices chosen when Dominator starts the game and both players play optimally. The main result of this paper is that the game domination number of a graph is not smaller than the game domination number of any guarded subgraph. Several applications of this result are presented.


2016 ◽  
Vol 10 (1) ◽  
pp. 30-45 ◽  
Author(s):  
Sandi Klavzar ◽  
Gasper Kosmrlj ◽  
Simon Schmidt

The domination game is played on a graph G by Dominator and Staller. The game domination number ?(G) of G is the number of moves played when Dominator starts and both players play optimally. Similarly, ?g (G) is the number of moves played when Staller starts. Graphs G with ?(G) = 2, graphs with ?g(G) = 2, as well as graphs extremal with respect to the diameter among these graphs are characterized. In particular, ?g (G) = 2 and diam(G) = 3 hold for a graph G if and only if G is a so-called gamburger. Graphs G with ?(G) = 3 and diam(G) = 6, as well as graphs G with ?g(G) = 3 and diam(G) = 5 are also characterized.


Author(s):  
J. Maria Regila Baby ◽  
K. Uma Samundesvari

A total dominating set [Formula: see text] is said to be a complete cototal dominating set if [Formula: see text] has no isolated nodes and it is represented by [Formula: see text]. The complete cototal domination number, represented by [Formula: see text], is the minimum cardinality of a [Formula: see text] set of [Formula: see text]. In this paper, the bounds for complete cototal domination number of Cartesian product graphs and complement graphs are determined.


2018 ◽  
Vol 99 (2) ◽  
pp. 327-337 ◽  
Author(s):  
TIJO JAMES ◽  
SANDI KLAVŽAR ◽  
AMBAT VIJAYAKUMAR

We investigate the domination game and the game domination number $\unicode[STIX]{x1D6FE}_{g}$ in the class of split graphs. We prove that $\unicode[STIX]{x1D6FE}_{g}(G)\leq n/2$ for any isolate-free $n$-vertex split graph $G$, thus strengthening the conjectured $3n/5$ general bound and supporting Rall’s $\lceil n/2\rceil$-conjecture. We also characterise split graphs of even order with $\unicode[STIX]{x1D6FE}_{g}(G)=n/2$.


2020 ◽  
Vol S (1) ◽  
pp. 48-51
Author(s):  
Uma Maheswari S. ◽  
Siva Parvathi M. ◽  
Bhatathi B. ◽  
Venkata Anusha M.

Sign in / Sign up

Export Citation Format

Share Document