scholarly journals A TWO STAGE NONMAGNETIC HIGH PRESSURE EQUIPMENT FOR STUDYING VARIOUS TRANSPORT PHENOMENA

1984 ◽  
Vol 33 (4) ◽  
pp. 472
Author(s):  
CHU HAO-RONG ◽  
QUI GUANG-LING ◽  
TANG XIU-YING ◽  
SHEN XUE-CHU
Author(s):  
Thomas E. Dyson ◽  
David B. Helmer ◽  
James A. Tallman

This paper presents sliding-mesh unsteady CFD simulations of high-pressure turbine sections of a modern aviation engine in an extension of previously presented work [1]. The simulation included both the first and second stages of a two-stage high-pressure turbine. Half-wheel domains were used, with source terms representing purge and film flows. The end-wall flow-path cavities were incorporated in the domain to a limited extent. The passage-to-passage variation in thermal predictions was compared for a 1D and 2D turbine inlet boundary condition. Substantial impact was observed on both first and second stage vanes despite the mixing from the first stage blade. Qualitative and quantitative differences in surface temperature distributions were observed due to different ratios between airfoil counts in the two domains.


2018 ◽  
Vol 220 ◽  
pp. 03009 ◽  
Author(s):  
Oleg Baturin ◽  
Grigorii Popov ◽  
Daria Kolmakova ◽  
Vasilii Zubanov ◽  
Julia Novikova ◽  
...  

The article presents a refining method for a two-stage screw centrifugal pump by the joint usage of mathematical optimization software IOSO, meshing complex NUMECA and CFD software ANSYS CFX. The pump main parameters: high-pressure stage rotor speed was 13300 rpm; low-pressure rotor speed was 3617 rpm by gearbox; inlet total pressure was 0.4 MPa; outlet mass flow was 132.6 kg/s at the nominal mode. This article describes the process of simplifying the calculation model for the optimization. The parameters of camber lines of the low-pressure impeller, transition duct, and high-pressure impeller blades for two sections (hub and shroud) were chosen as optimization parameters. The blades of low-pressure impeller, transition duct and high-pressure impeller have changed during optimization. The optimization goal was the increase of the pump efficiency with preservation or slight increase in the pressure head. The efficiency was increased by 3%.


2003 ◽  
Vol 70 (3) ◽  
pp. 297-305 ◽  
Author(s):  
Maurice G Hayes ◽  
Alan L Kelly

Although widely adopted by the chemical and pharmaceutical industries in recent years, little published data is available regarding possible applications of high pressure homogenisation for dairy products. The objective of this work was to compare the effects of conventional (18 MPa, two-stage) and single or two-stage high pressure homogenisation (HPH) at 50–200 MPa on some properties of raw whole bovine milk (∼4% fat). Fat globule size decreased as HPH pressure increased and, under certain conditions of temperature and pressure, HPH yielded significantly smaller fat globules than conventional homogenisation. Fat globule size was also affected by milk inlet temperature. The pH of all homogenised milk samples decreased during 24 h refrigerated storage. Total bacterial counts of milk were decreased significantly (P<0·05) for milk samples HPH-treated at 150 or 200 MPa. Whiteness and rennet coagulation properties of milk were unaffected or enhanced, respectively, as homogenisation pressure was increased. Average casein micelle size decreased slightly when skim milk was homogenised at 200 MPa. Thus, HPH treatment has several, potentially significant, effects on milk properties.


1996 ◽  
Vol 20 (10) ◽  
pp. 741-749 ◽  
Author(s):  
I. Fletcher ◽  
C.S. Cox ◽  
W.J.B. Arden ◽  
A. Doonan
Keyword(s):  

Author(s):  
Robert W. van den Berg ◽  
H. Hoogland ◽  
H. L. M. Lelieveld ◽  
Ludo Van Schepdael

2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Thomas J. Zolper ◽  
Scott Bair ◽  
Kyle Horne

Abstract The ASME Pressure-Viscosity Report was a seminal publication on high pressure-viscosity and density supervised by the ASME Research Committee on Lubrication, sponsored by dozens of industries, and undertaken by Harvard University using high-pressure equipment developed by Prof. P. W. Bridgman. The resulting measurements of the “Viscosity and Density of Over 40 Lubricating Fluids of Known Composition at Pressures to 150,000 psi (1034 MPa) and Temperatures to 425 °F (218.3 °C/491.5 K)” should have become an invaluable reference to tribologists around the world. The present work revisits that monumental effort to distill the results into an established equation of state using modern computer software. The authors used curve-fitting techniques to fit measured density and viscosity data to the parameters of the Tait-Doolittle equation for use in further tribological modeling. This information will help a new generation of engineers to model the piezoviscous properties of lubricant base-stocks in diverse tribological applications.


Sign in / Sign up

Export Citation Format

Share Document