scholarly journals Effects of bottom electrode on resistive switching characteristics of ZnO films

2013 ◽  
Vol 62 (7) ◽  
pp. 077202
Author(s):  
Li Hong-Xia ◽  
Chen Xue-Ping ◽  
Chen Qi ◽  
Mao Qi-Nan ◽  
Xi Jun-Hua ◽  
...  
2019 ◽  
Vol 9 (4) ◽  
pp. 486-493 ◽  
Author(s):  
S. Sahoo ◽  
P. Manoravi ◽  
S.R.S. Prabaharan

Introduction: Intrinsic resistive switching properties of Pt/TiO2-x/TiO2/Pt crossbar memory array has been examined using the crossbar (4×4) arrays fabricated by using DC/RF sputtering under specific conditions at room temperature. Materials and Methods: The growth of filament is envisaged from bottom electrode (BE) towards the top electrode (TE) by forming conducting nano-filaments across TiO2/TiO2-x bilayer stack. Non-linear pinched hysteresis curve (a signature of memristor) is evident from I-V plot measured using Pt/TiO2-x /TiO2/Pt bilayer device (a single cell amongst the 4×4 array is used). It is found that the observed I-V profile shows two distinguishable regions of switching symmetrically in both SET and RESET cycle. Distinguishable potential profiles are evident from I-V curve; in which region-1 relates to the electroformation prior to switching and region-2 shows the switching to ON state (LRS). It is observed that upon reversing the polarity, bipolar switching (set and reset) is evident from the facile symmetric pinched hysteresis profile. Obtaining such a facile switching is attributed to the desired composition of Titania layers i.e. the rutile TiO2 (stoichiometric) as the first layer obtained via controlled post annealing (650oC/1h) process onto which TiO2-x (anatase) is formed (350oC/1h). Results: These controlled processes adapted during the fabrication step help manipulate the desired potential barrier between metal (Pt) and TiO2 interface. Interestingly, this controlled process variation is found to be crucial for measuring the switching characteristics expected in Titania based memristor. In order to ensure the formation of rutile and anatase phases, XPS, XRD and HRSEM analyses have been carried out. Conclusion: Finally, the reliability of bilayer memristive structure is investigated by monitoring the retention (104 s) and endurance tests which ensured the reproducibility over 10,000 cycles.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1228 ◽  
Author(s):  
Dong Keun Lee ◽  
Min-Hwi Kim ◽  
Suhyun Bang ◽  
Tae-Hyeon Kim ◽  
Sungjun Kim ◽  
...  

In this research, nano-wedge resistive switching random-access memory (ReRAM) based on a Si3N4 switching layer and silicon bottom electrode was fabricated, and its multilevel switching characteristics were investigated. The wedge bottom electrode was formed by a tetramethyl ammonium hydroxide (TMAH) wet-etching process. The nano-wedge ReRAM was demonstrated to have different reset current levels by varying the compliance currents. To explain the effect of modulating the compliance currents, the switching characteristics of both the SET and RESET behaviors were shown. After measuring the device under four different compliance currents, it was proved to have different current levels due to an inhibited resistive state after a SET switching process. Furthermore, SPICE circuit simulation was carried out to show the effect of line resistance on current summation for the array sizes of 8 × 8 and 16 × 16. These results indicate the importance of minimizing the line resistance for successful implementation as a hardware-based neural network.


2015 ◽  
Vol 2 (2) ◽  
pp. 28-36
Author(s):  
Shuhan Jing ◽  
◽  
Adnan Younis ◽  
Dewei Chu ◽  
Sean Li

Sign in / Sign up

Export Citation Format

Share Document