scholarly journals Ionization state of ultra-thin carbon film irradiated by ultra-short intense laser pulse

2016 ◽  
Vol 65 (11) ◽  
pp. 113201
Author(s):  
Bai Chun-Jiang ◽  
Cui Wan-Zhao ◽  
Yu Jin-Qing
Author(s):  
N. Kohyama ◽  
K. Fukushima ◽  
A. Fukami

Since the interlayer or adsorbed water of some clay minerals are quite easily dehydrated in dried air, in vacuum, or at moderate temperatures even in the atmosphere, the hydrated forms have not been observed by a conventional electron microscope(TEM). Recently, specific specimen chambers, “environmental cells(E.C.),” have been developed and confirmed to be effective for electron microscopic observation of wet specimen without dehydration. we observed hydrated forms of some clay minerals and their morphological changes by dehydration using a TEM equipped with an E.C..The E.C., equipped with a single hole copper-microgrid sealed by thin carbon-film, attaches to a TEM(JEM 7A) with an accelerating voltage 100KV and both gas pressure (from 760 Torr to vacuum) and relative humidity can be controlled. The samples collected from various localities in Japan were; tubular halloysite (l0Å) from Gumma Prefecture, sperical halloysite (l0Å) from Tochigi Pref., and intermediate halloysite containing both tubular and spherical types from Fukushima Pref..


Author(s):  
O. H. Kapp ◽  
M. Ohtsuki ◽  
N. Robin ◽  
S. N. Vinogradov ◽  
A. V. Crewe

Annelid extracellular hemoglobins are among the largest known proteins (M.W = 3.9 x 106), and together with the hemocyanins are the largest known oxygen carriers. They display oxygen affinities generally higher than those o vertebrate hemoglobins with Hill coefficients ranging from slightly higher than unity to values as high as 5-6. These complex molecules are composed of multiple copies of as many as six different polypeptides and posse: approximately 150 hemes per molecule.The samples were diluted to 100-200 μg/ml with distilled water just before application to a thin carbon film (∽15 Å thick). One percent (w/v) uranyl acetate solution was used for negative staining for 2 minutes and dried in air. The specimens were examined with the high resolution STEM. Their general appearance is that of a hexagonal bilayer (Fig. 1), each layer consisting of six spheroidal subunits. The corner to corner hexagonal dimensic is approximately 300 Å and the bilayer thickness approximately 200 Å.


2002 ◽  
Vol 88 (19) ◽  
Author(s):  
J. Fuchs ◽  
C. Labaune ◽  
H. Bandulet ◽  
P. Michel ◽  
S. Depierreux ◽  
...  

2010 ◽  
Vol 28 (2) ◽  
pp. 293-298 ◽  
Author(s):  
Wei Yu ◽  
Lihua Cao ◽  
M.Y. Yu ◽  
A.L. Lei ◽  
Z.M. Sheng ◽  
...  

AbstractIt is shown that an intense laser pulse can be focused by a conical channel. This anomalous light focusing can be attributed to a hitherto ignored effect in nonlinear optics, namely that the boundary response depends on the light intensity: the inner cone surface is ionized and the laser pulse is in turn modified by the resulting boundary plasma. The interaction creates a new self-consistently evolving light-plasma boundary, which greatly reduces reflection and enhances forward propagation of the light pulse. The hollow cone can thus be used for attaining extremely high light intensities for applications in strong-field and high energy-density physics and other areas.


2013 ◽  
Vol 222 (5) ◽  
pp. 1263-1270 ◽  
Author(s):  
J. Zhang ◽  
T. Li ◽  
J. Wang ◽  
J. Schmalian

Author(s):  
Amol Holkundkar ◽  
Felix Mackenroth

Abstract We present a novel approach to analyzing phase-space distributions of electrons ponderomotively scattered off an ultra-intense laser pulse and comment on implications for thus conceivable in-situ laser-characterization schemes. To this end, we present fully relativistic test particle simulations of electrons scattered from an ultra-intense, counter-propagating laser pulse. The simulations unveil non-trivial scalings of the scattered electron distribution with the laser intensity, pulse duration, beam waist, and energy of the electron bunch. We quantify the found scalings by means of an analytical expression for the scattering angle of an electron bunch ponderomotively scattered from a counter-propagating, ultra-intense laser pulse, also accounting for radiation reaction (RR) through the Landau-Lifshitz (LL) model. For various laser and bunch parameters, the derived formula is in excellent quantitative agreement with the simulations. We also demonstrate how in the radiation-dominated regime a simple re-scaling of our model's input parameter yields quantitative agreement with numerical simulations based on the LL model.


2018 ◽  
Author(s):  
Bertrand Aubert ◽  
David Hebert ◽  
Jean-Luc Rullier ◽  
Emilien Lescoute ◽  
Laurent Videau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document