scholarly journals HYDROLOGY MODELS APPLICATION TO SOLUTION OF THE RIVER DEVIATION PROBLEM DURING DAM CONSTRUCTION

2019 ◽  
Vol 49 (2) ◽  
Author(s):  
OLGA NITCHEVA ◽  
POLYA DOBREVA ◽  
BORISLAV MILEV ◽  
EMIL BOURNASKI
1903 ◽  
Vol 55 (1413supp) ◽  
pp. 22648-22648
Author(s):  
J. Francis Le Baron
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1145
Author(s):  
Zhongyuan Chen ◽  
Hao Xu ◽  
Yanna Wang

This study reviews the monsoonal Yangtze and the arid Nile deltas with the objective of understanding how the process–response between river-basin modifications and delta-estuary ecological degradation are interrelated under contrasting hydroclimate dynamics. Our analysis shows that the Yangtze River had a long-term stepwise reduction in sediment and silicate fluxes to estuary due to dam construction since the 1960s, especially after the Three Gorges Dam (TGD) closed in 2003. By contrast, the Nile had a drastic reduction of sediment, freshwater, and silicate fluxes immediately after the construction of the Aswan High Dam (AHD) in 1964. Seasonal rainfall in the mid-lower Yangtze basin (below TGD) complemented riverine materials to its estuary, but little was available to the Nile coast below the AHD in the hyper-arid climate setting. Nitrogen (N) and phosphate (P) fluxes in both river basins have increased because of the overuse of N- and P-fertilizer, land-use changes, urbanization, and industrialization. Nutrient ratios (N:P:Si) in both delta-estuaries was greatly altered, i.e., Yangtze case: 75:1:946 (1960s–1970s), 86:1:272 (1980s–1990s) and 102:1:75 (2000s–2010s); and Nile case: 6:1:32 (1960s–1970s), 8:1:9 (1980s–1990s), and 45:1:22 (2013), in the context of the optimum of Redfield ratio (N:P:Si = 16:1:16). This led to an ecological regime shift evidenced by a long-term change in phytoplankton communities in the Yangtze estuary, where silicious algae tended to lose dominance since the end of the 1990s, when more toxic dinoflagellates began to emerge. In the Nile estuary, such a regime shift was indicated by the post-dam dramatic reduction in zooplankton standing crop and fish landings until the early 2000s when biological recovery occurred due to nutrient inputs from anthropogenic sources. Although the Yangtze had higher human impacts than the Nile in terms of population, industrialization, and fertilizer application, N concentrations in the Nile estuarine waters surpassed the Yangtze in recent decades. However, eutrophication in the Yangtze estuary is much more intensive than in the Nile, leading to the likelihood of its estuarine water becoming more acidic than ever before. Therefore, ecological degradation in both delta-estuaries does not follow a linear trajectory, due not only to different climate dynamics but also to human forcings. The comparative insights of this study should be incorporated into future integrated coastal management of these two important systems.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Behrang Beiranvand ◽  
Mehdi Komasi

AbstractIn the present study, using instrumentation data regarding vertical and horizontal displacement of the dam have been analyzed. Also, the largest and most critical section of the Marvak earth dam is modeled with the behavioral model of the Mohr–Coulomb by GeoStudio software. Numerical modeling of the dam has been done considering the actual embankment conditions and to analyze the changes of the immediate settlement during construction and the consolidation settlement just after construction and initial impounding. The outcomes of instrumentation and numerical analysis at the end of Marvak dam construction showed a settlement between 20 and 500 mm. The results show that the settlement will occur during the construction at the upper levels and the end of construction at the middle levels of the dam. By comparing observed and predicted data, multivariate regression and the explanation coefficient criterion (R2) was found to be R2 = 0.9579, which shows a very good correlation between observed and predicted data, and represents a good match for the settlement points and their location with the initial conditions of the design, and the behavior of the dam in terms of the settlement is found to be stable.


2011 ◽  
Vol 66 (4) ◽  
pp. 523-529 ◽  
Author(s):  
Teimuraz Matcharashvili ◽  
Tamaz Chelidze ◽  
Vakhtang Abashidze ◽  
Natalia Zhukova ◽  
Ekaterine Mepharidze ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document