functional and phylogenetic diversity
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 58)

H-INDEX

20
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Mengyu Wang ◽  
Nan Lu ◽  
Nannan An ◽  
Bojie Fu

The relationship between biodiversity and ecosystem multifunctionality (EMF) is crucial for understanding the processes of ecological restoration in semi-arid regions. However, partitioning the relative influence of various biodiversity attributes, namely taxonomic, functional, and phylogenetic diversity, on EMF during secondary succession is still unclear. This study aimed to bridge the gap by employing field measurements and the chronosequence approach at 21 plots with different stand ages and precipitation conditions on the Loess Plateau of China. For diversity indices, we calculated the Shannon–Wiener diversity index, Simpson’s dominance index, Pielou evenness index, community weighted mean (CWM), functional variance (FDvar), and Faith’s phylogenetic diversity (PD) based on the empirically measured composition and traits of plant species. The EMF was expressed as the averaged value of eight function variables (including aboveground biomass, root biomass, soil total carbon, total nitrogen, and total phosphorus content, soil organic carbon, available nitrogen and available phosphorus content). The results showed that species evenness and CWM of leaf dry matter content (LDMC) significantly increased yet the CWM of specific leaf area (SLA) decreased with stand age, indicating the resource-use strategy of the plants became more conservative through succession into its later stages. The EMF increased with both stand age and mean annual precipitation. The structural equation model revealed that stand age, soil water content (SWC), and the multiple diversity indices altogether accounted for 56.0% of the variation in the EMF. PD and the CWMs of plant height and LDMC had positive effects on the EMF, and the FDvar of leaf nitrogen had negative effects on EMF. However, the Shannon Wiener diversity had no significant effect on the EMF. Our results suggest that functional and phylogenetic diversity are more important than taxonomic diversity in predicting EMF, and that multidimensional biodiversity indices should be jointly considered to better predict EMF during the succession of semiarid grasslands.


2021 ◽  
Author(s):  
Karen Neves ◽  
Bernardo Santos ◽  
Ted Schultz ◽  
Dietrich Gotzek ◽  
Rodolfo C.R. Abreu ◽  
...  

Abstract Although savanna woody encroachment has become a global phenomenon, few studies have simultaneously evaluated its effects on multiple dimensions and levels of savanna biodiversity. We evaluated how the progressive increase in tree cover in a fire-suppressed savanna landscape affects the taxonomic, functional, and phylogenetic diversity of neotropical ant communities. We sampled ants along an extensive tree cover gradient, ranging from open savannas to forests established in former savanna areas due to fire suppression, and found that Leaf Area Index explained much of the observed variation in ant diversity at both the alpha and beta levels. However, ant responses to variation in tree cover were largely non-linear as differences in alpha diversity and in the dissimilarities of the sampled communities were often much more marked at the savanna/forest transition than at any other part of the gradient. The patterns of functional and phylogenetic diversity mirrored those of taxonomic diversity, notably at the beta level. At the alpha level, functional diversity tended to increase, whereas taxonomic and phylogenetic diversity decreased or was unrelated to tree cover. Our results indicate that savanna ant communities switch rapidly to an alternative state once savanna turns into forest. Ant communities in the newly formed forest areas lacked many of the species typical of the open habitats, suggesting that the maintenance of a fire suppression policy, is likely to result in a decrease in ant diversity and in the homogenization of the ant fauna at the landscape level.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rohit Chakravarty ◽  
Ram Mohan ◽  
Christian C. Voigt ◽  
Anand Krishnan ◽  
Viktoriia Radchuk

AbstractSpecies richness exhibits well-known patterns across elevational gradients in various taxa, but represents only one aspect of quantifying biodiversity patterns. Functional and phylogenetic diversity have received much less attention, particularly for vertebrate taxa. There is still a limited understanding of how functional, phylogenetic and taxonomic diversity change in concert across large gradients of elevation. Here, we focused on the Himalaya—representing the largest elevational gradients in the world—to investigate the patterns of taxonomic, functional and phylogenetic diversity in a bat assemblage. Combining field data on species occurrence, relative abundance, and functional traits with measures of phylogenetic diversity, we found that bat species richness and functional diversity declined at high elevation but phylogenetic diversity remained unchanged. At the lowest elevation, we observed low functional dispersion despite high species and functional richness, suggesting a niche packing mechanism. The decline in functional richness, dispersion, and divergence at the highest elevation is consistent with patterns observed due to environmental filtering. These patterns are driven by the absence of rhinolophid bats, four congeners with extreme trait values. Our data, some of the first on mammals from the Himalayan region, suggest that in bat assemblages with relatively high species diversity, phylogenetic diversity may not be a substitute to measure functional diversity.


2021 ◽  
Vol 261 ◽  
pp. 109241
Author(s):  
Ricardo Lourenço-de-Moraes ◽  
Felipe S. Campos ◽  
Ana C. Carnaval ◽  
Mileny Otani ◽  
Frederico G.R. França ◽  
...  

2021 ◽  
Author(s):  
Sandrine Pavoine ◽  
Carlo Ricotta

Rarity reflects the low abundance of a species while distinctiveness reflects its quality of being easy to recognize because it has unique functional characteristics and/or an isolated phylogenetic position. As such, the assemblage-level rarity of a species' functional and phylogenetic characteristics (that we name 'effective originality') results from both the rarity and the distinctiveness of this species. The functional and phylogenetic diversity of an assemblage then results from a compromise between the abundances and the effective originalities of the species it contains. Although the distinctiveness of a species itself depends on the abundance of the other species in the assemblage, distinctiveness indices that are available in the ecological literature scarcely consider abundance data. We develop a unifying framework that demonstrates the direct connections between measures of diversity, rarity, distinctiveness and effective originality. While developing our framework, we discovered a family of distinctiveness indices that permit a full control of the influence one wants to give to the strict uniqueness of a species (=its smallest functional or phylogenetic distance to another species in the assemblage). Illustrating our framework with bat phylogenetic diversity along a disturbance gradient in Mexico, we show how each component of rarity, distinctiveness and originality can be controlled to obtain efficient indicators for conservation. Overall our framework is aimed to improve conservation actions directed towards highly diverse areas and/or towards species whose loss would considerably decrease biodiversity by offering flexible quantitative tools where the influence of abundant versus rare, and ordinary versus original, species is understood and controlled.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sonia Llorente-Culebras ◽  
Rafael Molina-Venegas ◽  
A. Márcia Barbosa ◽  
Silvia B. Carvalho ◽  
Miguel Á. Rodríguez ◽  
...  

Protected areas (PAs) have been created with the purpose of preserving biodiversity, acting as refuges from anthropogenic pressures. Traditionally, PAs have been designed and managed to represent mainly taxonomic diversity, ignoring other diversity facets such as its functional and phylogenetic components. Yet, functional and phylogenetic diversity are, respectively, connected with species’ roles on ecosystems and evolutionary history held within communities. Here, we focused on the amphibian, reptile, resident breeding bird, and non-flying mammal faunas of the national and natural parks of the Iberian Peninsula, to evaluate whether these PAs are adequately representing regional functional, phylogenetic, and taxonomic diversity of each group. Specifically, we computed functional and phylogenetic diversity within each PA, and then compared those values to the ones obtained from a random assembly of species from the regional pool, that was defined as the region encompassing the PA and a neighboring area of 50 km beyond its boundary. We also calculated the proportion of species in each regional pool that were present within the PAs. In general, the functional and phylogenetic diversity of amphibians, reptiles and non-flying mammals found within PAs did not differ significantly from random expectations generated from the species pertaining to the regional pool, although a few PAs showed a higher diversity. In contrast, resident breeding birds presented lower functional and phylogenetic diversity than expected by chance in many of the PAs, which could relate to climatic variables and the habitat specificity of some species. The proportion of species from the regional pools that are present in the PAs was high for amphibians, reptiles and mammals, and slightly lower for birds. These results suggest that the Iberian natural and national parks are effectively capturing the functional, phylogenetic and taxonomic diversity of most tetrapod assemblages present at the regional level. Future studies should identify priority areas to expand the representation of these biodiversity components, and assess potential effects of climate and land-use changes on current patterns.


Sign in / Sign up

Export Citation Format

Share Document