scholarly journals On Robin’s criterion for the Riemann Hypothesis

2021 ◽  
Vol 27 (4) ◽  
pp. 15-24
Author(s):  
Safia Aoudjit ◽  
◽  
Djamel Berkane ◽  
Pierre Dusart ◽  
◽  
...  

Robin’s criterion says that the Riemann Hypothesis is equivalent to \[\forall n\geq 5041, \ \ \frac{\sigma(n)}{n}\leq e^{\gamma}\log_2 n,\] where \sigma(n) is the sum of the divisors of n, \gamma represents the Euler–Mascheroni constant, and \log_i denotes the i-fold iterated logarithm. In this note we get the following better effective estimates: \begin{equation*} \forall n\geq3, \ \frac{\sigma(n)}{n}\leq e^{\gamma}\log_2 n+\frac{0.3741}{\log_2^2n}. \end{equation*} The idea employed will lead us to a possible new reformulation of the Riemann Hypothesis in terms of arithmetic functions.

Author(s):  
Robin Wilson

What is the Riemann hypothesis, and why does it matter? ‘How to win a million dollars’ looks in detail at Riemann’s conjecture. While Gauss attempted to explain why primes thin out, Bernhard Riemann in 1859 proposed an exact formula for the distribution of primes, employing Euler’s ‘zeta function’ and the idea of complex numbers. In 2000, the Clay Mathematics Institute offered a million dollars for the solutions of each of seven famous problems, of which the Riemann hypothesis was one. The Riemann hypothesis implies strong bounds on the growth of other arithmetic functions, in addition to the primes-counting function. It remains one of the most famous unsolved problems of mathematics.


Author(s):  
Bernhard Heim ◽  
Markus Neuhauser

AbstractIn this paper we investigate growth properties and the zero distribution of polynomials attached to arithmetic functions g and h, where g is normalized, of moderate growth, and $$0<h(n) \le h(n+1)$$ 0 < h ( n ) ≤ h ( n + 1 ) . We put $$P_0^{g,h}(x)=1$$ P 0 g , h ( x ) = 1 and $$\begin{aligned} P_n^{g,h}(x) := \frac{x}{h(n)} \sum _{k=1}^{n} g(k) \, P_{n-k}^{g,h}(x). \end{aligned}$$ P n g , h ( x ) : = x h ( n ) ∑ k = 1 n g ( k ) P n - k g , h ( x ) . As an application we obtain the best known result on the domain of the non-vanishing of the Fourier coefficients of powers of the Dedekind $$\eta $$ η -function. Here, g is the sum of divisors and h the identity function. Kostant’s result on the representation of simple complex Lie algebras and Han’s results on the Nekrasov–Okounkov hook length formula are extended. The polynomials are related to reciprocals of Eisenstein series, Klein’s j-invariant, and Chebyshev polynomials of the second kind.


Mathematika ◽  
2016 ◽  
Vol 63 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Sandro Bettin ◽  
Steven M. Gonek
Keyword(s):  

Author(s):  
CARLO SANNA

Abstract Let $g \geq 2$ be an integer. A natural number is said to be a base-g Niven number if it is divisible by the sum of its base-g digits. Assuming Hooley’s Riemann hypothesis, we prove that the set of base-g Niven numbers is an additive basis, that is, there exists a positive integer $C_g$ such that every natural number is the sum of at most $C_g$ base-g Niven numbers.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1254
Author(s):  
Xue Han ◽  
Xiaofei Yan ◽  
Deyu Zhang

Let Pc(x)={p≤x|p,[pc]areprimes},c∈R+∖N and λsym2f(n) be the n-th Fourier coefficient associated with the symmetric square L-function L(s,sym2f). For any A>0, we prove that the mean value of λsym2f(n) over Pc(x) is ≪xlog−A−2x for almost all c∈ε,(5+3)/8−ε in the sense of Lebesgue measure. Furthermore, it holds for all c∈(0,1) under the Riemann Hypothesis. Furthermore, we obtain that asymptotic formula for λf2(n) over Pc(x) is ∑p,qprimep≤x,q=[pc]λf2(p)=xclog2x(1+o(1)), for almost all c∈ε,(5+3)/8−ε, where λf(n) is the normalized n-th Fourier coefficient associated with a holomorphic cusp form f for the full modular group.


1970 ◽  
Vol 41 (3) ◽  
pp. 945-955 ◽  
Author(s):  
R. P. Pakshirajan ◽  
M. Sreehari

Sign in / Sign up

Export Citation Format

Share Document