On Fourier Coefficients of the Symmetric Square L-Function at Piatetski-Shapiro Prime Twins
Keyword(s):
The Mean
◽
Let Pc(x)={p≤x|p,[pc]areprimes},c∈R+∖N and λsym2f(n) be the n-th Fourier coefficient associated with the symmetric square L-function L(s,sym2f). For any A>0, we prove that the mean value of λsym2f(n) over Pc(x) is ≪xlog−A−2x for almost all c∈ε,(5+3)/8−ε in the sense of Lebesgue measure. Furthermore, it holds for all c∈(0,1) under the Riemann Hypothesis. Furthermore, we obtain that asymptotic formula for λf2(n) over Pc(x) is ∑p,qprimep≤x,q=[pc]λf2(p)=xclog2x(1+o(1)), for almost all c∈ε,(5+3)/8−ε, where λf(n) is the normalized n-th Fourier coefficient associated with a holomorphic cusp form f for the full modular group.