Improving Outcomes for Osteomyelitis After Partial Bone Resection: A Preliminary Report

2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Jeffrey C. Karr

Following partial bone resection for osteomyelitis, continued osteomyelitis in the remaining bone is common and problematic. Shortcomings in available surgical techniques to combat this also contribute to this problem. Presented are two case studies using a solution to this problem with a different type of bone void filler as a carrier vehicle for delivering antibiotics into the remaining infected bone to eradicate any residual bacteria in the remaining bone.

2017 ◽  
Vol 107 (6) ◽  
pp. 511-515 ◽  
Author(s):  
Jeffrey C. Karr

Background:A percutaneous antibiotic delivery technique (PAD-T) used for the adjunctive management of osteomyelitis is presented.Methods:This surgical technique incorporates a calcium sulfate and hydroxyapatite (calcium phosphate) bone void filler acting as a carrier vehicle with either an antibiotic or an antifungal medicine, delivering this combination directly into the area of osteomyelitis.Results:The benefit of the PAD-T is reviewed with a case presentation of a successfully treated calcaneal osteomyelitis.Conclusions:No previously reported PAD-T using a simple bone cortex incision in the adjunctive treatment of osteomyelitis has been reported. The PAD-T safely and effectively uses a calcium sulfate and hydroxyapatite bone void filler carrier vehicle to deliver either an antibiotic or an antifungal medicine directly into the area of osteomyelitis.


2011 ◽  
Vol 101 (2) ◽  
pp. 146-152 ◽  
Author(s):  
Jeffrey C. Karr ◽  
Joseph Lauretta ◽  
Georgia Keriazes

Background: Several absorbable and nonabsorbable antibiotic carrier systems are available in the adjunctive surgical management of osteomyelitis of the foot, ankle, and lower leg. These carrier systems have significant limitations regarding which antibiotics can be successfully incorporated into the carrier vehicle. The calcium sulfate and hydroxyapatite Cerament Bone Void Filler is a biocompatible, absorbable ceramic bone void filler that can successfully deliver multiple heat-stable and heat-unstable antibiotics that have not been generally used before with antibiotic beads in treating musculoskeletal infections. Methods: Cerament Bone Void Filler discs with the antibiotics rifampin, vancomycin, tobramycin, cefazolin, cefepime hydrochloride, vancomycin-tobramycin, piperacillin-tazobactam, ceftazidime, and ticarcillin-clavulanate were tested in vitro against methicillin-resistant Staphylococcus aureus. Results: The zones of inhibition for the Cerament Bone Void Filler antibiotic discs plated against Staphylococcus aureus obtained were 33% to 222% greater than the minimum zones of inhibition breakpoints for bacteria susceptibility as defined by the standard set by the Clinical and Laboratory Standards Institute. Cerament Bone Void Filler discs with the antibiotics plated against Pseudomonas aeruginosa produced zones of inhibition of 93% to 200% greater than the minimum zones of inhibition breakpoints for bacteria susceptibility as defined by the standard set by the Clinical and Laboratory Standards Institute. Conclusions: The calcium sulfate and hydroxyapatite Cerament Bone Void Filler was an excellent carrier vehicle for multiple antibiotics creating in vitro significant zones of inhibition, thus demonstrating susceptibility against Staphylococcus aureus and Pseudomonas aeruginosa, which holds tremendous promise in treating osteomyeilits. (J Am Podiatr Med Assoc 101(2): 146–152, 2011)


2011 ◽  
Vol 101 (3) ◽  
pp. 259-264 ◽  
Author(s):  
Jeffrey C. Karr

Several nonbiodegradable and biodegradable antibiotic cement delivery systems are available for the delivery of antibiotics for adjunctive therapy in the management of osteomyelitis. A major nonbiodegradable delivery system is polymethylmethacrylate beads. Antibiotics that can be incorporated into this delivery system are limited to the heat-stable antibiotics vancomycin and aminoglycosides, tobramycin being the most popular. Calcium sulfate and hydroxyapatite (Cerament Bone Void Filler) is a unique biocompatible and biodegradable ceramic bone void filler that can successfully deliver heat-stable and heat-unstable antibiotics in musculoskeletal infections. The use of Cerament as antibiotic beads has not been previously reported. An off-label case of diabetic foot osteomyelitis successfully managed with surgical bone resection and vancomycin Cerament antibiotic beads is presented. Subsequent surgery for the bone infection and staged removal of the antibiotic beads was not necessary. (J Am Podiatr Med Assoc 101(3): 259–264, 2011)


2021 ◽  
Vol 108 (Supplement_6) ◽  
Author(s):  
C Marshall ◽  
J Butler

Abstract Aim The successful treatment and eradication of bone infection requires a multifaceted approach and may recur even after excision if resultant bone void is not managed effectively. This paper aims to review the clinical effectiveness of antibiotic-impregnated bone void filler and current empirical antibiotic guidelines. Method We report a retrospective study of 18 patients with chronic osteomyelitis following injury or surgery managed via Ilizarov Ring Fixator (IRF). All patients were managed by IRF stabilisation procedures with debridement, microbiological sampling, and bone void filling with antibiotic-impregnated biocomposite material, in addition to culture-specific systemic antimicrobial therapy. Results Patients were followed up for a mean of 15.9 months. Infection was eradicated in 94.1% of patients in a grossly comorbid demographic. Comorbidities associated with increased risk of osteomyelitis were noted in 72.2% of patients. Anaerobic bacteria were identified in culture for four (22.2%) of the 18 patients. Conclusions We detected a higher than suspected growth of anaerobes in our samples, suggesting the need for metronidazole in empirical antibiotic treatment. This study would suggest that the use of STIMULAN® may be preferable in this National Health Service from a cost-effect perspective, as our results are comparable to those using other bone void fillers.


Orthopedics ◽  
2002 ◽  
Vol 25 (4) ◽  
pp. 440-440
Author(s):  
Anonymous
Keyword(s):  

2009 ◽  
Vol 20 (2) ◽  
pp. 461-464 ◽  
Author(s):  
Stephen A. Schendel ◽  
John Peauroi

Author(s):  

Aim: The aim of this article is to report on the safety and long-term efficacy of Cerament® BoneVoid Filler bone substitute for repairing craniofacial bone defects. Post-traumatic cranioplasty is a complex and challenging procedure for all maxillo-craniofacial surgeons and neurosurgeons, especially when repairing large areas. The standard criterion for repairing small cranial defects is the use autogenous bone from the iliac crest or split calvarial grafts. Autogenous grafts may result in donor-site morbidity, increased surgical time, reabsorption, blood loss, and longer recovery time . Alloplastic materials used for bone repair, such as methyl methacrylate, hydroxyapatite, titanium, or porous polyethylene, are expected to have optimal properties, including easy adaptation, biocompatibility, ingrowth of new tissue, stability of shape, and low rate of reabsorption. A cranial implant should be easily shaped and positioned, allowing easy tissue growth. In very wide cranium defects the new technology is a custom made cranial implant constructed three-dimensionally with different types of materials. However, this procedure is very expensive with various infection rates depending on the kind of material used and on the chemicophysical composition of the implant. Methods: The authors report the case of a 50-year-old man with a severe deformity of the forehead-supra orbital area as a result of a previous complex fronto-facial trauma treated in an emergency Unit. Secondary correction and reconstruction of the residual deformities were performed by using Cerament® Bone Void Filler, an alloplastic biphasic material, composed of 40% hydroxyapatite, 60% calcium sulfate and the radio-contrast agent iohexol. The unique ratio of hydroxyapatite and calcium sulfate is designed to enable Cerament to resorb at the same rate that bone forms. Calcium sulfate acts as a resorbable carrier for hydroxyapatite which is highly osteoconductive, promoting bone ingrowth.It seems to be a promising bone graft substitute in the management of bony irregularities in the fronto-orbital area. Conclusion: The patient was first hospitalized as the result of a serious craniofacial trauma. One year after the first emergency cranio-orbital reconstructive operation, a marked deformity of the frontal region appeared with a “grid effect” due to the inadequate plate-bony fixation of the fractures applied during the first bony recomposition and because it was not as rigid as it should have been . A secondary surgery for deformity correction was performed. The hardware was totally removed and the bony deformity smoothed, reshaped, covered and filled using Cerament® Bone Void Filler, a biomaterial. The patient recovered with a satisfactory cranium-forehead shape, no complications, and complete disappearance of a frowning look of the fronto-orbital region. Recently, increased use of bone substitutes in the reconstruction of bone defects has been fuelled by donor site complications associated with autologous bone harvesting. Cerament® BoneVoid Filler is a biphasic and injectable bone substitute that has a highly compressive strength and the ability to promote cancellous bone healing


2003 ◽  
Vol 254-256 ◽  
pp. 265-268 ◽  
Author(s):  
Niklas Axén ◽  
Tobias Persson ◽  
Kajsa Björklund ◽  
Hakan Engqvist ◽  
Leif Hermansson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document