EXPRESS PASSENGER TRANSPORT SYSTEM AS A SCALE-FREE NETWORK

2006 ◽  
Vol 20 (27) ◽  
pp. 1755-1761 ◽  
Author(s):  
BAIBAI FU ◽  
ZIYOU GAO ◽  
FASHENG LIU ◽  
XIANJUAN KONG

An express highway itself is not a scale-free network, while the Express Passenger Transport System (EPTS) on the express highway network has the properties of a small-world and scale-free network. Data analysis based on the observation of the EPTS in Shandong province, China, shows that the EPTS has the properties of scale-free networks and the power exponent λ of the distribution is equal to about 2.1. Based on the scale-free network topology structure of the EPTS network, the construction of the EPTS network will be more efficient and robust.

2011 ◽  
Vol 25 (32) ◽  
pp. 4593-4603
Author(s):  
LING-ZAN ZHU ◽  
BEI-BEI YIN ◽  
LEI ZHAO ◽  
KAI-YUAN CAI

It was generally believed that scale-free networks would be small-world. In this paper, two models, named Model A and Model B, are proposed to show that certain scale-free networks can be linear-world instead of small-world. By linear-world, it means that the average path length L of the network grows linearly with the total number of nodes N, i.e., L~N. Model A generates a deterministic scale-free network with high assortativity and numerical simulations demonstrate that the network is linear-world when it satisfies degree exponent λ>1. Model B constructs a partially deterministic scale-free network, which is connected by identical small scale-free networks following certain rules. Analytical arguments and numerical simulations both yield L~N which suggests that it is also linear-world. It is further discussed in this paper that the network generated by Model Bcould be either correlated or uncorrelated. This suggests that, inconsistent with the results in related works, uncorrelated scale-free networks can also be linear-world.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


2013 ◽  
Vol 753-755 ◽  
pp. 2959-2962
Author(s):  
Jun Tao Yang ◽  
Hui Wen Deng

Assigning the value of interest to each node in the network, we give a scale-free network model. The value of interest is related to the fitness and the degree of the node. Experimental results show that the interest model not only has the characteristics of the BA scale-free model but also has the characteristics of fitness model, and the network has a power-law distribution property.


2012 ◽  
Vol 54 (1-2) ◽  
pp. 3-22 ◽  
Author(s):  
J. BARTLETT ◽  
M. J. PLANK

AbstractRandom networks were first used to model epidemic dynamics in the 1950s, but in the last decade it has been realized that scale-free networks more accurately represent the network structure of many real-world situations. Here we give an analytical and a Monte Carlo method for approximating the basic reproduction number ${R}_{0} $ of an infectious agent on a network. We investigate how final epidemic size depends on ${R}_{0} $ and on network density in random networks and in scale-free networks with a Pareto exponent of 3. Our results show that: (i) an epidemic on a random network has the same average final size as an epidemic in a well-mixed population with the same value of ${R}_{0} $; (ii) an epidemic on a scale-free network has a larger average final size than in an equivalent well-mixed population if ${R}_{0} \lt 1$, and a smaller average final size than in a well-mixed population if ${R}_{0} \gt 1$; (iii) an epidemic on a scale-free network spreads more rapidly than an epidemic on a random network or in a well-mixed population.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hui Zhang ◽  
Peng Zhao ◽  
Jian Gao ◽  
Xiang-ming Yao

The transport network structure plays a crucial role in transport dynamics. To better understand the property of the bus network in big city and reasonably configure the bus lines and transfers, this paper seeks to take the bus network of Beijing as an example and mainly use space L and space P to analyze the network topology properties. The approach is applied to all the bus lines in Beijing which includes 722 lines and 5421 bus station. In the first phase of the approach, space L is used. The results show that the bus network of Beijing is a scale-free network and the degree of more than 99 percent of nodes is lower than 10. The results also show that the network is an assortative network with 46 communities. In a second phase, space P is used to analyze the property of transfer. The results show that the average transfer time of Beijing bus network which is 1.88 and 99.8 percent of arbitrary two pair nodes is reachable within 4 transfers.


2005 ◽  
Vol 19 (16) ◽  
pp. 785-792 ◽  
Author(s):  
JIAN-GUO LIU ◽  
ZHONG-TUO WANG ◽  
YAN-ZHONG DANG

Scale-free networks, having connectivity distribution P(k)~k-α (where k is the site connectivity), are very resilient to random failures but are fragile to intentional attacks. The purpose of this paper is to find the network design guideline which can make the robustness of the network to both random failures and intentional attacks maximum while keeping the average connectivity <k> per node constant. We find that when <k> = 3 the robustness of the scale-free networks reach its maximum value if the minimal connectivity m = 1, but when <k> is larger than four, the networks will become more robust to random failures and targeted attacks as the minimal connectivity m gets larger.


2010 ◽  
Vol 21 (08) ◽  
pp. 1001-1010 ◽  
Author(s):  
BO SHEN ◽  
YUN LIU

We study the dynamics of minority opinion spreading using a proposed simple model, in which the exchange of views between agents is determined by a quantity named confidence scale. To understand what will promote the success of minority, two types of networks, random network and scale-free network are considered in opinion formation. We demonstrate that the heterogeneity of networks is advantageous to the minority and exchanging views between more agents will reduce the opportunity of minority's success. Further, enlarging the degree that agents trust each other, i.e. confidence scale, can increase the probability that opinions of the minority could be accepted by the majority. We also show that the minority in scale-free networks are more sensitive to the change of confidence scale than that in random networks.


2010 ◽  
Vol 44-47 ◽  
pp. 849-853
Author(s):  
Jun Li ◽  
Yan Niu

A model of detecting an abnormal IP traffic in a subset of network is described. The model is based on the hypothesis that random sampling subnet are the same probability distribution as the entire network if some conditions are met with, nodes’s degree in IP traffic can be processed as a power-law distribution in scale-free network . The model analyzes the power exponent and relations between the anomalous behavior and parameter r. Finally, a test was conducted by the data, some type attacks could be identified exactly. the model provides a new framework for intrusion-detection system.


Author(s):  
Graziano Vernizzi ◽  
Henri Orland

This article deals with complex networks, and in particular small world and scale free networks. Various networks exhibit the small world phenomenon, including social networks and gene expression networks. The local ordering property of small world networks is typically associated with regular networks such as a 2D square lattice. The small world phenomenon can be observed in most scale free networks, but few small world networks are scale free. The article first provides a brief background on small world networks and two models of scale free graphs before describing the replica method and how it can be applied to calculate the spectral densities of the adjacency matrix and Laplacian matrix of a scale free network. It then shows how the effective medium approximation can be used to treat networks with finite mean degree and concludes with a discussion of the local properties of random matrices associated with complex networks.


2021 ◽  
Author(s):  
Nejc Rozman ◽  
Marko Corn ◽  
Gasper Skulj ◽  
Janez Diaci ◽  
Lovro Subelj

Sign in / Sign up

Export Citation Format

Share Document