scholarly journals 9 Probabilistically Modeling and Decoding Neural Population Activity in Motor Cortex

Author(s):  
Andrew J. Zimnik ◽  
Mark M. Churchland

AbstractRapid execution of motor sequences is believed to depend upon the fusing of movement elements into cohesive units that are executed holistically. We sought to determine the contribution of motor cortex activity to this ability. Two monkeys performed highly practiced two-reach sequences, interleaved with matched reaches performed alone or separated by a delay. We partitioned neural population activity into components pertaining to preparation, initiation, and execution. The hypothesis that movement elements fuse makes specific predictions regarding all three forms of activity. We observed none of these predicted effects. Instead, two-reach sequences involved the same set of neural events as individual reaches, but with a remarkable temporal compression: preparation for the second reach occurred as the first was in flight. Thus, at the level of motor cortex, skillfully executing a rapid sequence depends not on fusing elements, but on the ability to perform two computations at the same time.


2018 ◽  
Author(s):  
Chethan Pandarinath ◽  
K. Cora Ames ◽  
Abigail A Russo ◽  
Ali Farshchian ◽  
Lee E Miller ◽  
...  

In the fifty years since Evarts first recorded single neurons in motor cortex of behaving monkeys, great effort has been devoted to understanding their relation to movement. Yet these single neurons exist within a vast network, the nature of which has been largely inaccessible. With advances in recording technologies, algorithms, and computational power, the ability to study network-level phenomena is increasing exponentially. Recent experimental results suggest that the dynamical properties of these networks are critical to movement planning and execution. Here we discuss this dynamical systems perspective, and how it is reshaping our understanding of the motor cortices. Following an overview of key studies in motor cortex, we discuss techniques to uncover the “latent factors” underlying observed neural population activity. Finally, we discuss efforts to leverage these factors to improve the performance of brain-machine interfaces, promising to make these findings broadly relevant to neuroengineering as well as systems neuroscience.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Adrian Ponce-Alvarez ◽  
Gabriela Mochol ◽  
Ainhoa Hermoso-Mendizabal ◽  
Jaime de la Rocha ◽  
Gustavo Deco

Previous research showed that spontaneous neuronal activity presents sloppiness: the collective behavior is strongly determined by a small number of parameter combinations, defined as ‘stiff’ dimensions, while it is insensitive to many others (‘sloppy’ dimensions). Here, we analyzed neural population activity from the auditory cortex of anesthetized rats while the brain spontaneously transited through different synchronized and desynchronized states and intermittently received sensory inputs. We showed that cortical state transitions were determined by changes in stiff parameters associated with the activity of a core of neurons with low responses to stimuli and high centrality within the observed network. In contrast, stimulus-evoked responses evolved along sloppy dimensions associated with the activity of neurons with low centrality and displaying large ongoing and stimulus-evoked fluctuations without affecting the integrity of the network. Our results shed light on the interplay among stability, flexibility, and responsiveness of neuronal collective dynamics during intrinsic and induced activity.


2019 ◽  
Author(s):  
Adrián Ponce-Alvarez ◽  
Gabriela Mochol ◽  
Ainhoa Hermoso-Mendizabal ◽  
Jaime de la Rocha ◽  
Gustavo Deco

SummaryPrevious research showed that spontaneous neuronal activity presents sloppiness: the collective behavior is strongly determined by a small number of parameter combinations, defined as “stiff” dimensions, while it is insensitive to many others (“sloppy” dimensions). Here, we analyzed neural population activity from the auditory cortex of anesthetized rats while the brain spontaneously transited through different synchronized and desynchronized states and intermittently received sensory inputs. We showed that cortical state transitions were determined by changes in stiff parameters associated with the activity of a core of neurons with low responses to stimuli and high centrality within the observed network. In contrast, stimulus-evoked responses evolved along sloppy dimensions associated with the activity of neurons with low centrality and displaying large ongoing and stimulus-evoked fluctuations without affecting the integrity of the network. Our results shed light on the interplay among stability, flexibility, and responsiveness of neuronal collective dynamics during intrinsic and induced activity.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Matthew D Golub ◽  
Byron M Yu ◽  
Steven M Chase

To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects’ internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output.


2021 ◽  
Author(s):  
Shreya Saxena ◽  
Abigail A. Russo ◽  
John P. Cunningham ◽  
Mark M. Churchland

AbstractLearned movements can be skillfully performed at different paces. What neural strategies produce this flexibility? Can they be predicted and understood by network modeling? We trained monkeys to perform a cycling task at different speeds, and trained artificial recurrent networks to generate the empirical muscle-activity patterns. Network solutions reflected the principle that smooth well-behaved dynamics require low trajectory tangling, and yielded quantitative and qualitative predictions. To evaluate predictions, we recorded motor cortex population activity during the same task. Responses supported the hypothesis that the dominant neural signals reflect not muscle activity, but network-level strategies for generating muscle activity. Single-neuron responses were better accounted for by network activity than by muscle activity. Similarly, neural population trajectories shared their organization not with muscle trajectories, but with network solutions. Thus, cortical activity could be understood based on the need to generate muscle activity via dynamics that allow smooth, robust control over movement speed.


Sign in / Sign up

Export Citation Format

Share Document