scholarly journals Latent factors and dynamics in motor cortex and their application to brain-machine interfaces

Author(s):  
Chethan Pandarinath ◽  
K. Cora Ames ◽  
Abigail A Russo ◽  
Ali Farshchian ◽  
Lee E Miller ◽  
...  

In the fifty years since Evarts first recorded single neurons in motor cortex of behaving monkeys, great effort has been devoted to understanding their relation to movement. Yet these single neurons exist within a vast network, the nature of which has been largely inaccessible. With advances in recording technologies, algorithms, and computational power, the ability to study network-level phenomena is increasing exponentially. Recent experimental results suggest that the dynamical properties of these networks are critical to movement planning and execution. Here we discuss this dynamical systems perspective, and how it is reshaping our understanding of the motor cortices. Following an overview of key studies in motor cortex, we discuss techniques to uncover the “latent factors” underlying observed neural population activity. Finally, we discuss efforts to leverage these factors to improve the performance of brain-machine interfaces, promising to make these findings broadly relevant to neuroengineering as well as systems neuroscience.

2018 ◽  
Author(s):  
Chethan Pandarinath ◽  
K. Cora Ames ◽  
Abigail A Russo ◽  
Ali Farshchian ◽  
Lee E Miller ◽  
...  

In the fifty years since Evarts first recorded single neurons in motor cortex of behaving monkeys, great effort has been devoted to understanding their relation to movement. Yet these single neurons exist within a vast network, the nature of which has been largely inaccessible. With advances in recording technologies, algorithms, and computational power, the ability to study network-level phenomena is increasing exponentially. Recent experimental results suggest that the dynamical properties of these networks are critical to movement planning and execution. Here we discuss this dynamical systems perspective, and how it is reshaping our understanding of the motor cortices. Following an overview of key studies in motor cortex, we discuss techniques to uncover the “latent factors” underlying observed neural population activity. Finally, we discuss efforts to leverage these factors to improve the performance of brain-machine interfaces, promising to make these findings broadly relevant to neuroengineering as well as systems neuroscience.


2021 ◽  
Author(s):  
Shreya Saxena ◽  
Abigail A. Russo ◽  
John P. Cunningham ◽  
Mark M. Churchland

AbstractLearned movements can be skillfully performed at different paces. What neural strategies produce this flexibility? Can they be predicted and understood by network modeling? We trained monkeys to perform a cycling task at different speeds, and trained artificial recurrent networks to generate the empirical muscle-activity patterns. Network solutions reflected the principle that smooth well-behaved dynamics require low trajectory tangling, and yielded quantitative and qualitative predictions. To evaluate predictions, we recorded motor cortex population activity during the same task. Responses supported the hypothesis that the dominant neural signals reflect not muscle activity, but network-level strategies for generating muscle activity. Single-neuron responses were better accounted for by network activity than by muscle activity. Similarly, neural population trajectories shared their organization not with muscle trajectories, but with network solutions. Thus, cortical activity could be understood based on the need to generate muscle activity via dynamics that allow smooth, robust control over movement speed.


2021 ◽  
Vol 15 ◽  
Author(s):  
Daniela Buchwald ◽  
Stefan Schaffelhofer ◽  
Matthias Dörge ◽  
Benjamin Dann ◽  
Hansjörg Scherberger

Grasping movements are some of the most common movements primates do every day. They are important for social interactions as well as picking up objects or food. Usually, these grasping movements are guided by vision but proprioceptive and haptic inputs contribute greatly. Since grasping behaviors are common and easy to motivate, they represent an ideal task for understanding the role of different brain areas during planning and execution of complex voluntary movements in primates. For experimental purposes, a stable and repeatable presentation of the same object as well as the variation of objects is important in order to understand the neural control of movement generation. This is even more the case when investigating the role of different senses for movement planning, where objects need to be presented in specific sensory modalities. We developed a turntable setup for non-human primates (macaque monkeys) to investigate visually and tactually guided grasping movements with an option to easily exchange objects. The setup consists of a turntable that can fit six different objects and can be exchanged easily during the experiment to increase the number of presented objects. The object turntable is connected to a stepper motor through a belt system to automate rotation and hence object presentation. By increasing the distance between the turntable and the stepper motor, metallic components of the stepper motor are kept at a distance to the actual recording setup, which allows using a magnetic-based data glove to track hand kinematics. During task execution, the animal sits in the dark and is instructed to grasp the object in front of it. Options to turn on a light above the object allow for visual presentation of the objects, while the object can also remain in the dark for exclusive tactile exploration. A red LED is projected onto the object by a one-way mirror that serves as a grasp cue instruction for the animal to start grasping the object. By comparing kinematic data from the magnetic-based data glove with simultaneously recorded neural signals, this setup enables the systematic investigation of neural population activity involved in the neural control of hand grasping movements.


Author(s):  
Andrew J. Zimnik ◽  
Mark M. Churchland

AbstractRapid execution of motor sequences is believed to depend upon the fusing of movement elements into cohesive units that are executed holistically. We sought to determine the contribution of motor cortex activity to this ability. Two monkeys performed highly practiced two-reach sequences, interleaved with matched reaches performed alone or separated by a delay. We partitioned neural population activity into components pertaining to preparation, initiation, and execution. The hypothesis that movement elements fuse makes specific predictions regarding all three forms of activity. We observed none of these predicted effects. Instead, two-reach sequences involved the same set of neural events as individual reaches, but with a remarkable temporal compression: preparation for the second reach occurred as the first was in flight. Thus, at the level of motor cortex, skillfully executing a rapid sequence depends not on fusing elements, but on the ability to perform two computations at the same time.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Aneesha K Suresh ◽  
James M Goodman ◽  
Elizaveta V Okorokova ◽  
Matthew Kaufman ◽  
Nicholas G Hatsopoulos ◽  
...  

Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the present study, we examine whether similar dynamics are also observed during grasping movements, which involve fundamentally different patterns of kinematics and muscle activations. Using a variety of analytical approaches, we show that M1 does not exhibit such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying hand control is thus fundamentally different from that underlying arm control.


2019 ◽  
Author(s):  
Aneesha K. Suresh ◽  
James M. Goodman ◽  
Elizaveta V. Okorokova ◽  
Matthew T. Kaufman ◽  
Nicholas G. Hatsopoulos ◽  
...  

AbstractRotational dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to produce movement. Here, we show that M1 does not exhibit smooth dynamics during grasping movements, suggesting a more input-driven circuit.


2018 ◽  
Vol 38 (44) ◽  
pp. 9390-9401 ◽  
Author(s):  
Chethan Pandarinath ◽  
K. Cora Ames ◽  
Abigail A. Russo ◽  
Ali Farshchian ◽  
Lee E. Miller ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Daniela Buchwald ◽  
Hansjörg Scherberger

Movements are defining characteristics of all behaviors. Animals walk around, move their eyes to explore the world or touch structures to learn more about them. So far we only have some basic understanding of how the brain generates movements, especially when we want to understand how different areas of the brain interact with each other. In this study we investigated the influence of sensory object information on grasp planning in four different brain areas involved in vision, touch, movement planning, and movement generation in the parietal, somatosensory, premotor and motor cortex. We trained one monkey to grasp objects that he either saw or touched beforehand while continuously recording neural spiking activity with chronically implanted floating multi-electrode arrays. The animal was instructed to sit in the dark and either look at a shortly illuminated object or reach out and explore the object with his hand in the dark before lifting it up. In a first analysis we confirmed that the animal not only memorizes the object in both tasks, but also applies an object-specific grip type, independent of the sensory modality. In the neuronal population, we found a significant difference in the number of tuned units for sensory modalities during grasp planning that persisted into grasp execution. These differences were sufficient to enable a classifier to decode the object and sensory modality in a single trial exclusively from neural population activity. These results give valuable insights in how different brain areas contribute to the preparation of grasp movement and how different sensory streams can lead to distinct neural activity while still resulting in the same action execution.


2018 ◽  
Vol 29 (4) ◽  
pp. 1619-1633 ◽  
Author(s):  
Naama Kadmon Harpaz ◽  
David Ungarish ◽  
Nicholas G Hatsopoulos ◽  
Tamar Flash

Abstract A complex action can be described as the composition of a set of elementary movements. While both kinematic and dynamic elements have been proposed to compose complex actions, the structure of movement decomposition and its neural representation remain unknown. Here, we examined movement decomposition by modeling the temporal dynamics of neural populations in the primary motor cortex of macaque monkeys performing forelimb reaching movements. Using a hidden Markov model, we found that global transitions in the neural population activity are associated with a consistent segmentation of the behavioral output into acceleration and deceleration epochs with directional selectivity. Single cells exhibited modulation of firing rates between the kinematic epochs, with abrupt changes in spiking activity timed with the identified transitions. These results reveal distinct encoding of acceleration and deceleration phases at the level of M1, and point to a specific pattern of movement decomposition that arises from the underlying neural activity. A similar approach can be used to probe the structure of movement decomposition in different brain regions, possibly controlling different temporal scales, to reveal the hierarchical structure of movement composition.


Sign in / Sign up

Export Citation Format

Share Document