How Could We Get Nosology from Computation?

Author(s):  
Christoph Mathys

Psychiatry has found it difficult to develop a nosology that allows for the targeted treatment of disorders of the mind. This article sets out a possible way forward: harnessing systems theory to provide the conceptual constraints needed to link clinical phenomena with neurobiology. This approach builds on the insight that the mind is a system which, to regulate its environment, needs to have a model of that environment and needs to update predictions about it using the rules of inductive logic. It can be shown that Bayesian inference can be reduced to updating beliefs based on precision-weighted prediction errors, where a prediction error is the difference between actual and predicted input, and precision is the confidence associated with the input prediction. Precision weighting of prediction errors entails that a given discrepancy between outcome and prediction means more, and leads to greater belief updates, the more confidently the prediction was made. This provides a conceptual framework linking clinical experience with the pathophysiology underlying disorders of the mind. Limitations of this approach are discussed and ways to work around them illustrated. Initial steps and possible future directions toward a nosology based on failures of precision weighting are discussed.

2019 ◽  
Author(s):  
Emilie Werlen ◽  
Soon-Lim Shin ◽  
Francois Gastambide ◽  
Jennifer Francois ◽  
Mark D Tricklebank ◽  
...  

AbstractIn an uncertain world, the ability to predict and update the relationships between environmental cues and outcomes is a fundamental element of adaptive behaviour. This type of learning is typically thought to depend on prediction error, the difference between expected and experienced events, and in the reward domain this has been closely linked to mesolimbic dopamine. There is also increasing behavioural and neuroimaging evidence that disruption to this process may be a cross-diagnostic feature of several neuropsychiatric and neurological disorders in which dopamine is dysregulated. However, the precise relationship between haemodynamic measures, dopamine and reward-guided learning remains unclear. To help address this issue, we used a translational technique, oxygen amperometry, to record haemodynamic signals in the nucleus accumbens (NAc) and orbitofrontal cortex (OFC) while freely-moving rats performed a probabilistic Pavlovian learning task. Using a model-based analysis approach to account for individual variations in learning, we found that the oxygen signal in the NAc correlated with a reward prediction error, whereas in the OFC it correlated with an unsigned prediction error or salience signal. Furthermore, an acute dose of amphetamine, creating a hyperdopaminergic state, disrupted rats’ ability to discriminate between cues associated with either a high or a low probability of reward and concomitantly corrupted prediction error signalling. These results demonstrate parallel but distinct prediction error signals in NAc and OFC during learning, both of which are affected by psychostimulant administration. Furthermore, they establish the viability of tracking and manipulating haemodynamic signatures of reward-guided learning observed in human fMRI studies using a proxy signal for BOLD in a freely behaving rodent.


2020 ◽  
pp. 107385842090759
Author(s):  
Kelly M. J. Diederen ◽  
Paul C. Fletcher

A large body of work has linked dopaminergic signaling to learning and reward processing. It stresses the role of dopamine in reward prediction error signaling, a key neural signal that allows us to learn from past experiences, and that facilitates optimal choice behavior. Latterly, it has become clear that dopamine does not merely code prediction error size but also signals the difference between the expected value of rewards, and the value of rewards actually received, which is obtained through the integration of reward attributes such as the type, amount, probability and delay. More recent work has posited a role of dopamine in learning beyond rewards. These theories suggest that dopamine codes absolute or unsigned prediction errors, playing a key role in how the brain models associative regularities within its environment, while incorporating critical information about the reliability of those regularities. Work is emerging supporting this perspective and, it has inspired theoretical models of how certain forms of mental pathology may emerge in relation to dopamine function. Such pathology is frequently related to disturbed inferences leading to altered internal models of the environment. Thus, it is critical to understand the role of dopamine in error-related learning and inference.


2021 ◽  
Vol 71 (Suppl-1) ◽  
pp. S23-27
Author(s):  
Mamoona Javaid ◽  
Hannan Masud

Objective: To determine the difference between target and postoperative refraction in children with congenital cataract. Study design:    Prospective interventional study Place and Duration of Study: This study was conducted at Armed Forces Institute of Ophthalmology from May 2017 to May 2018. Methods: This study was conducted on 38 eyes suffering from congenital cataract. Age at the time of surgery, axial length, average keratometry reading, estimated refraction, and the power of IOL implanted were recorded. Spherical equivalent of post-op refraction at 3 months after surgery was noted. The difference between the estimated and actual postoperative refraction was termed as prediction error. Age, keratometry, and axial length were then assessed for its effects on prediction error. Results:  Overall the mean prediction error was 1.43±1.98 D. The mean prediction errors in eyes with axial lengths ⩾20 mm were 0.96± 1.03 D and in eyes <20 mm were 5.50± 3.49 D. The mean prediction errors in eyes in children aged ⩾4 years were 0.14± 0.61 D) and in children aged < 4 years was 2.60± 2.07 D. The differences between the prediction errors for both axial length and age were statistically significant (p<0.05). Conclusion:       IOL power calculations in eyes with axial length less than 20 mm and children less than 4 years of age are prone to postoperative refractive errors. This study has reflected that adult based formulas are not reliable in pediatric age group.


2019 ◽  
Author(s):  
Matthew H. Davis ◽  
Ediz Sohoglu

Spoken language is one of the most important sounds that humans hear, yet, also one of the most difficult sounds for non-human listeners or machines to identify. In this chapter we explore different neuro-computational implementations of Bayesian Inference for Speech Perception. We propose, in line with Predictive Coding (PC) principles, that Bayesian Inference is based on neural computations of the difference between heard and expected speech segments (Prediction Error). We will review three functions of these Prediction Error representations: (1) in combining prior knowledge and degraded speech for optimal word identification, (2) supporting rapid learning processes so that perception remains optimal despite perceptual degradation or variation, (3) ensuring that listeners detect instances of lexical novelty (previously unfamiliar words) so as to learn new words over the life span. Evidence from MEG and multivariate fMRI studies suggestion computations of Prediction Error in the Superior Temporal Gyrus (STG) during these three processes.


2020 ◽  
Author(s):  
Moritz Moeller ◽  
Jan Grohn ◽  
Sanjay Manohar ◽  
Rafal Bogacz

AbstractReinforcement learning theories propose that humans choose based on the estimated values of available options, and that they learn from rewards by reducing the difference between the experienced and expected value. In the brain, such prediction errors are broadcasted by dopamine. However, choices are not only influenced by expected value, but also by risk. Like reinforcement learning, risk preferences are modulated by dopamine: enhanced dopamine levels induce risk-seeking. Learning and risk preferences have so far been studied independently, even though it is commonly assumed that they are (partly) regulated by the same neurotransmitter. Here, we use a novel learning task to look for prediction-error induced risk-seeking in human behavior and pupil responses. We find that prediction errors are positively correlated with risk-preferences in imminent choices. Physiologically, this effect is indexed by pupil dilation: only participants whose pupil response indicates that they experienced the prediction error also show the behavioral effect.


2019 ◽  
Vol 45 (5) ◽  
pp. 793-803 ◽  
Author(s):  
Emilie Werlen ◽  
Soon-Lim Shin ◽  
Francois Gastambide ◽  
Jennifer Francois ◽  
Mark D. Tricklebank ◽  
...  

Abstract In an uncertain world, the ability to predict and update the relationships between environmental cues and outcomes is a fundamental element of adaptive behaviour. This type of learning is typically thought to depend on prediction error, the difference between expected and experienced events and in the reward domain that has been closely linked to mesolimbic dopamine. There is also increasing behavioural and neuroimaging evidence that disruption to this process may be a cross-diagnostic feature of several neuropsychiatric and neurological disorders in which dopamine is dysregulated. However, the precise relationship between haemodynamic measures, dopamine and reward-guided learning remains unclear. To help address this issue, we used a translational technique, oxygen amperometry, to record haemodynamic signals in the nucleus accumbens (NAc) and orbitofrontal cortex (OFC), while freely moving rats performed a probabilistic Pavlovian learning task. Using a model-based analysis approach to account for individual variations in learning, we found that the oxygen signal in the NAc correlated with a reward prediction error, whereas in the OFC it correlated with an unsigned prediction error or salience signal. Furthermore, an acute dose of amphetamine, creating a hyperdopaminergic state, disrupted rats’ ability to discriminate between cues associated with either a high or a low probability of reward and concomitantly corrupted prediction error signalling. These results demonstrate parallel but distinct prediction error signals in NAc and OFC during learning, both of which are affected by psychostimulant administration. Furthermore, they establish the viability of tracking and manipulating haemodynamic signatures of reward-guided learning observed in human fMRI studies by using a proxy signal for BOLD in a freely behaving rodent.


Author(s):  
G. O. Hutchinson

Another novelist provides in some respects a point in between Chariton and Heliodorus. His elaborate expatiation on tears and the lover put rhythm at the service of an intricate treatment of the mind and body, and a shrewd depiction of amorous self-control and manipulation. The first-person narrative adds a further stratum of sophistication to this handling of the speaker’s rival and enemy. Achilles Tatius demonstrates further, in contrast with Chariton, the range of possibilities for the exploitation of rhythm seen already in the difference of Chariton and Plutarch. Comparison with Heliodorus brings out Achilles’ elegance.


This survey of research on psychology in five volumes is a part of a series undertaken by the ICSSR since 1969, which covers various disciplines under social science. Volume Five of this survey, Explorations into Psyche and Psychology: Some Emerging Perspectives, examines the future of psychology in India. For a very long time, intellectual investments in understanding mental life have led to varied formulations about mind and its functions across the word. However, a critical reflection of the state of the disciplinary affairs indicates the dominance of Euro-American theories and methods, which offer an understanding coloured by a Western world view, which fails to do justice with many non-Western cultural settings. The chapters in this volume expand the scope of psychology to encompass indigenous knowledge available in the Indian tradition and invite engaging with emancipatory concerns as well as broadening the disciplinary base. The contributors situate the difference between the Eastern and Western conceptions of the mind in the practice of psychology. They look at this discipline as shaped by and shaping between systems like yoga. They also analyse animal behaviour through the lens of psychology and bring out insights about evolution of individual and social behaviour. This volume offers critique the contemporary psychological practices in India and offers a new perspective called ‘public psychology’ to construe and analyse the relationship between psychologists and their objects of study. Finally, some paradigmatic, pedagogical, and substantive issues are highlighted to restructure the practice of psychology in the Indian setting.


2021 ◽  
Vol 11 (2) ◽  
pp. 870
Author(s):  
Galena Pisoni ◽  
Natalia Díaz-Rodríguez ◽  
Hannie Gijlers ◽  
Linda Tonolli

This paper reviews the literature concerning technology used for creating and delivering accessible museum and cultural heritage sites experiences. It highlights the importance of the delivery suited for everyone from different areas of expertise, namely interaction design, pedagogical and participatory design, and it presents how recent and future artificial intelligence (AI) developments can be used for this aim, i.e.,improving and widening online and in situ accessibility. From the literature review analysis, we articulate a conceptual framework that incorporates key elements that constitute museum and cultural heritage online experiences and how these elements are related to each other. Concrete opportunities for future directions empirical research for accessibility of cultural heritage contents are suggested and further discussed.


Sign in / Sign up

Export Citation Format

Share Document