scholarly journals Author response: Brassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases

2014 ◽  
Author(s):  
Yinwei Cheng ◽  
Wenjiao Zhu ◽  
Yuxiao Chen ◽  
Shinsaku Ito ◽  
Tadao Asami ◽  
...  
1994 ◽  
Vol 166 (2) ◽  
pp. 740-754 ◽  
Author(s):  
Moira E. Galway ◽  
James D. Masucci ◽  
Alan M. Lloyd ◽  
Virginia Walbot ◽  
Ronald W. Davis ◽  
...  

1997 ◽  
Vol 9 (7) ◽  
pp. 1109-1120 ◽  
Author(s):  
J C Larkin ◽  
M D Marks ◽  
J Nadeau ◽  
F Sack
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Guoliang Han ◽  
Yuxia Li ◽  
Ziqi Qiao ◽  
Chengfeng Wang ◽  
Yang Zhao ◽  
...  

Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Yinwei Cheng ◽  
Wenjiao Zhu ◽  
Yuxiao Chen ◽  
Shinsaku Ito ◽  
Tadao Asami ◽  
...  

In Arabidopsis, root hair and non-hair cell fates are determined by a MYB-bHLH-WD40 transcriptional complex and are regulated by many internal and environmental cues. Brassinosteroids play important roles in regulating root hair specification by unknown mechanisms. Here, we systematically examined root hair phenotypes in brassinosteroid-related mutants, and found that brassinosteroid signaling inhibits root hair formation through GSK3-like kinases or upstream components. We found that with enhanced brassinosteroid signaling, GL2, a cell fate marker for non-hair cells, is ectopically expressed in hair cells, while its expression in non-hair cells is suppressed when brassinosteroid signaling is reduced. Genetic analysis demonstrated that brassinosteroid-regulated root epidermal cell patterning is dependent on the WER-GL3/EGL3-TTG1 transcriptional complex. One of the GSK3-like kinases, BIN2, interacted with and phosphorylated EGL3, and EGL3s mutated at phosphorylation sites were retained in hair cell nuclei. BIN2 phosphorylated TTG1 to inhibit the activity of the WER-GL3/EGL3-TTG1 complex. Thus, our study provides insights into the mechanism of brassinosteroid regulation of root hair patterning.


Sign in / Sign up

Export Citation Format

Share Document