scholarly journals Myosin VIII associates with microtubule ends and together with actin plays a role in guiding plant cell division

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Shu-Zon Wu ◽  
Magdalena Bezanilla

Plant cells divide using the phragmoplast, a microtubule-based structure that directs vesicles secretion to the nascent cell plate. The phragmoplast forms at the cell center and expands to reach a specified site at the cell periphery, tens or hundreds of microns distant. The mechanism responsible for guiding the phragmoplast remains largely unknown. Here, using both moss and tobacco, we show that myosin VIII associates with the ends of phragmoplast microtubules and together with actin plays a role in guiding phragmoplast expansion to the cortical division site. Our data lead to a model whereby myosin VIII links phragmoplast microtubules to the cortical division site via actin filaments. Myosin VIII's motor activity along actin provides a molecular mechanism for steering phragmoplast expansion.

Author(s):  
Ann Cleary

Microinjection of fluorescent probes into living plant cells reveals new aspects of cell structure and function. Microtubules and actin filaments are dynamic components of the cytoskeleton and are involved in cell growth, division and intracellular transport. To date, cytoskeletal probes used in microinjection studies have included rhodamine-phalloidin for labelling actin filaments and fluorescently labelled animal tubulin for incorporation into microtubules. From a recent study of Tradescantia stamen hair cells it appears that actin may have a role in defining the plane of cell division. Unlike microtubules, actin is present in the cell cortex and delimits the division site throughout mitosis. Herein, I shall describe actin, its arrangement and putative role in cell plate placement, in another material, living cells of Tradescantia leaf epidermis.The epidermis is peeled from the abaxial surface of young leaves usually without disruption to cytoplasmic streaming or cell division. The peel is stuck to the base of a well slide using 0.1% polyethylenimine and bathed in a solution of 1% mannitol +/− 1 mM probenecid.


Author(s):  
Elena Kozgunova ◽  
Mari W. Yoshida ◽  
Gohta Goshima

AbstractAsymmetric cell division (ACD) underlies the development of multicellular organisms. The division site in plant cells is predetermined prior to mitosis and the localization of the mitotic spindle is considered static, unlike in animal ACD, where the cell division site is defined by active spindle-positioning mechanisms. Here, we isolated a novel mutant of the microtubule-associated protein TPX2 in the moss Physcomitrella patens and observed abnormal spindle motility, which led to inverted asymmetric division during organ development. This phenotype was rescued by restoring endogenous TPX2 function and, unexpectedly, by depolymerizing actin filaments. Thus, we identify an active spindle-positioning mechanism involving microtubules and actin filaments that sets the division site in plants, which is reminiscent of the acentrosomal ACD in animals, and suggests the existence of a common ancestral mechanism.


1994 ◽  
Vol 107 (8) ◽  
pp. 2249-2257 ◽  
Author(s):  
T. Asada ◽  
H. Shibaoka

As part of our efforts to understand the molecular basis of the microtubule-associated motility that is involved in cytokinesis in higher plant cells, an attempt was made to identify proteins with the ability to translocate microtubules in an extract from isolated phragmoplasts. Homogenization of isolated phragmoplasts in a solution that contained MgATP, MgGTP and a high concentration of NaCl resulted in the release from phragmoplasts of factors with ATPase and GTPase activity that were stimulated by microtubules. A protein fraction with microtubule-dependent ATPase and GTPase activity caused minus-end-headed gliding of microtubules in the presence of ATP or GTP. Polypeptides with microtubule-translocating activity cosedimented with microtubules that had been assembled in vitro from brain tubulin and were dissociated from sedimented microtubules by addition of ATP or GTP. After cosedimentation and dissociation procedures, a 125 kDa polypeptide and a 120 kDa polypeptide were recovered in a fraction that supported minus-end-headed gliding of microtubules. The rate of microtubule gliding that was caused by the fraction that contained the 125 kDa and 120 kDa polypeptides as main components was 1.28 microns/minute in the presence of ATP and 0.50 microns/minute in the presence of GTP. This fraction contained some microtubule-associated polypeptides in addition to the 125 kDa and 120 kDa polypeptides, but a fraction that contained only these additional polypeptides did not cause any translocation of microtubules. Thus, it appeared that the 125 kDa and 120 kDa polypeptides were responsible for translocation of microtubules. These polypeptides with plus-end-directed motor activity may play an important role in formation of the cell plate and in the organization of the phragmoplast.


2011 ◽  
pp. 142-153
Author(s):  
Marie-Cécile Caillaud ◽  
Laetitia Paganelli ◽  
Philippe Lecomte ◽  
Laurent Deslandes ◽  
Michaël Quentin ◽  
...  

2009 ◽  
Vol 61 (3) ◽  
pp. 901-909 ◽  
Author(s):  
A. M. Jovanovic ◽  
S. Durst ◽  
P. Nick

2013 ◽  
Vol 75 (2) ◽  
pp. 258-269 ◽  
Author(s):  
Carolyn G. Rasmussen ◽  
Amanda J. Wright ◽  
Sabine Müller

Sign in / Sign up

Export Citation Format

Share Document