scholarly journals Author response: Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita

2014 ◽  
Author(s):  
Karl R Wotton ◽  
Eva Jiménez-Guri ◽  
Anton Crombach ◽  
Hilde Janssens ◽  
Anna Alcaine-Colet ◽  
...  
eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Karl R Wotton ◽  
Eva Jiménez-Guri ◽  
Anton Crombach ◽  
Hilde Janssens ◽  
Anna Alcaine-Colet ◽  
...  

The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring ‘quantitative system drift’. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution.


BMC Genomics ◽  
2015 ◽  
Vol 16 (Suppl 13) ◽  
pp. S7 ◽  
Author(s):  
Konstantin Kozlov ◽  
Vitaly V Gursky ◽  
Ivan V Kulakovskiy ◽  
Arina Dymova ◽  
Maria Samsonova

2015 ◽  
Vol 03 (03) ◽  
Author(s):  
Dymova AV ◽  
Kozlov KN ◽  
Gursky VV
Keyword(s):  

2018 ◽  
Author(s):  
Alena Boos ◽  
Jutta Distler ◽  
Heike Rudolf ◽  
Martin Klingler ◽  
Ezzat El-Sherif

AbstractGap genes mediate the division of the anterior-posterior axis of insects into different fates through regulating downstream hox genes. Decades of tinkering the segmentation gene network of the long-germ fruit fly Drosophila melanogaster led to the conclusion that gap genes are regulated (at least initially) through a threshold-based French Flag model, guided by both anteriorly- and posteriorly-localized morphogen gradients. In this paper, we show that the expression patterns of gap genes in the intermediate-germ beetle Tribolium castaneum are mediated by a threshold-free ‘Speed Regulation’ mechanism, in which the speed of a genetic cascade of gap genes is regulated by a posterior gradient of the transcription factor Caudal. We show this by re-inducing the leading gap gene (namely, hunchback) resulting in the re-induction of the gap gene cascade at arbitrary points in time. This demonstrates that the gap gene network is self-regulatory and is primarily under the control of a posterior speed regulator in Tribolium and possibly all insects.


2021 ◽  
Author(s):  
Olivia R A Tidswell ◽  
Matthew A Benton ◽  
Michael E Akam

In Drosophila, segmentation genes of the gap class form a regulatory network that positions segment boundaries and assigns segment identities. This gene network shows striking parallels with another gene network known as the neuroblast timer series. The neuroblast timer genes hunchback, Krüppel, nubbin, and castor are expressed in temporal sequence in neural stem cells to regulate the fate of their progeny. These same four genes are expressed in corresponding spatial sequence along the Drosophila blastoderm. The first two, hunchback and Krüppel, are canonical gap genes, but nubbin and castor have limited or no roles in Drosophila segmentation. Whether nubbin and castor regulate segmentation in insects with the ancestral, sequential mode of segmentation remains largely unexplored. We have investigated the expression and functions of nubbin and castor during segment patterning in the sequentially-segmenting beetle Tribolium. Using multiplex fluorescent in situ hybridisation, we show that Tc-hunchback, Tc-Krüppel, Tc-nubbin and Tc-castor are expressed sequentially in the segment addition zone of Tribolium, in the same order as they are expressed in Drosophila neuroblasts. Furthermore, simultaneous disruption of multiple genes reveals that Tc-nubbin regulates segment identity, but does so redundantly with two previously described gap/gap-like genes, Tc-giant and Tc-knirps. Knockdown of two or more of these genes results in the formation of up to seven pairs of ectopic legs on abdominal segments. We show that this homeotic transformation is caused by loss of abdominal Hox gene expression, likely due to expanded Tc-Krüppel expression. Our findings support the theory that the neuroblast timer series was co-opted for use in insect segment patterning, and contribute to our growing understanding of the evolution and function of the gap gene network outside of Drosophila.


2018 ◽  
Author(s):  
Francesca Caroti ◽  
Everardo González Avalos ◽  
Viola Noeske ◽  
Paula González Avalos ◽  
Dimitri Kromm ◽  
...  

2021 ◽  
Author(s):  
Wenhan Chang ◽  
Martin Kreitman ◽  
Daniel R. Matute

ABSTRACTEvolved changes within species lead to the inevitable loss of viability in hybrids. Inviability is also a convenient phenotype to genetically map and validate functionally divergent genes and pathways differentiating closely related species. Here we identify the Drosophila melanogaster form of the highly conserved essential gap gene giant (gt) as a key genetic determinant of hybrid inviability in crosses with D. santomea. We show that the coding region of this allele in D. melanogaster/D. santomea hybrids is sufficient to cause embryonic inviability not seen in either pure species. Further genetic analysis indicates that tailless (tll), another gap gene, is also involved in the hybrid defects. giant and tll are both members of the gap gene network of transcription factors that participate in establishing anterior-posterior specification of the dipteran embryo, a highly conserved developmental process. Genes whose outputs in this process are functionally conserved nevertheless evolve over short timescales to cause inviability in hybrids.


Sign in / Sign up

Export Citation Format

Share Document