gap gene
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 14)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Wenhan Chang ◽  
Martin Kreitman ◽  
Daniel R. Matute

ABSTRACTEvolved changes within species lead to the inevitable loss of viability in hybrids. Inviability is also a convenient phenotype to genetically map and validate functionally divergent genes and pathways differentiating closely related species. Here we identify the Drosophila melanogaster form of the highly conserved essential gap gene giant (gt) as a key genetic determinant of hybrid inviability in crosses with D. santomea. We show that the coding region of this allele in D. melanogaster/D. santomea hybrids is sufficient to cause embryonic inviability not seen in either pure species. Further genetic analysis indicates that tailless (tll), another gap gene, is also involved in the hybrid defects. giant and tll are both members of the gap gene network of transcription factors that participate in establishing anterior-posterior specification of the dipteran embryo, a highly conserved developmental process. Genes whose outputs in this process are functionally conserved nevertheless evolve over short timescales to cause inviability in hybrids.


2021 ◽  
Vol 118 (46) ◽  
pp. e2109011118
Author(s):  
Marianne Bauer ◽  
Mariela D. Petkova ◽  
Thomas Gregor ◽  
Eric F. Wieschaus ◽  
William Bialek

In the regulation of gene expression, information of relevance to the organism is represented by the concentrations of transcription factor molecules. To extract this information the cell must effectively “measure” these concentrations, but there are physical limits to the precision of these measurements. We use the gap gene network in the early fly embryo as an example of the tradeoff between the precision of concentration measurements and the transmission of relevant information. For thresholded measurements we find that lower thresholds are more important, and fine tuning is not required for near-optimal information transmission. We then consider general sensors, constrained only by a limit on their information capacity, and find that thresholded sensors can approach true information theoretic optima. The information theoretic approach allows us to identify the optimal sensor for the entire gap gene network and to argue that the physical limitations of sensing necessitate the observed multiplicity of enhancer elements, with sensitivities to combinations rather than single transcription factors.


2021 ◽  
Author(s):  
Anand P Singh ◽  
Ping Wu ◽  
Sergey Ryabichko ◽  
Joao Raimundo ◽  
Michael Swan ◽  
...  

Developmental patterning networks are regulated by multiple inputs and feedback connections that rapidly reshape gene expression, limiting the information that can be gained solely from slow genetic perturbations. Here we show that fast optogenetic stimuli, real-time transcriptional reporters, and a simplified genetic background can be combined to reveal quantitative regulatory dynamics from a complex genetic network in vivo. We engineer light-controlled variants of the Bicoid transcription factor and study their effects on downstream gap genes in embryos. Our results recapitulate known relationships, including rapid Bicoid-dependent expression of giant and hunchback and delayed repression of Kruppel. In contrast, we find that the posterior pattern of knirps exhibits a quick but inverted response to Bicoid perturbation, suggesting a previously unreported role for Bicoid in suppressing knirps expression. Acute modulation of transcription factor concentration while simultaneously recording output gene activity represents a powerful approach for studying how gene circuit elements are coupled to cell identification and complex body pattern formation in vivo.


Development ◽  
2021 ◽  
Author(s):  
Olivia RA Tidswell ◽  
Matthew A. Benton ◽  
Michael Akam

The neuroblast timer genes hunchback, Krüppel, nubbin, and castor are expressed in temporal sequence in neural stem cells, and in corresponding spatial sequence along the Drosophila blastoderm. As canonical gap genes, hunchback and Krüppel play a crucial role in insect segmentation, but the roles of nubbin and castor in this process remain ambiguous. We have investigated the expression and functions of nubbin and castor during segmentation in the beetle Tribolium. We show that Tc-hunchback, Tc-Krüppel, Tc-nubbin and Tc-castor are expressed sequentially in the segment addition zone, and that Tc-nubbin regulates segment identity redundantly with two previously described gap/gap-like genes, Tc-giant and Tc-knirps. Simultaneous knockdown of Tc-nubbin, Tc-giant and Tc-knirps results in the formation of ectopic legs on abdominal segments. This homeotic transformation is caused by loss of abdominal Hox gene expression, likely due to expanded Tc-Krüppel expression. Our findings support the theory that the neuroblast timer series was co-opted for use in insect segment patterning, and contribute to our growing understanding of the evolution and function of the gap gene network outside of Drosophila.


2021 ◽  
Author(s):  
Wenhan Chang ◽  
Daniel R Matute ◽  
Martin Kreitman

Developmental processes in multicellular organisms, and the outcomes they produce, are often evolutionarily conserved. Yet phylogenetic conservation of developmental outcomes is not reflected in functional preservation of the genes regulating these processes, a phenomenon referred to as developmental system drift. Little is known about the evolutionary forces producing change in the molecular details of regulatory genes and their networks while preserving development outcomes. Here we address this void in knowledge by systematically swapping the Drosophila melanogaster coding and noncoding regions of the essential gap gene, giant, a key regulator of embryonic pattern formation, with orthologous sequences drawn from both closely and distantly related species within the genus. Employing sensitized genetic complementation assays, the loss of a transgene's ability to restore viability occurs across phylogeny at every interspecific level of comparison and includes both coding and noncoding changes. Epistasis is present as well -- both between coding and noncoding sequences and, in a dramatic example of change-of-sign epistasis, between the only two coding substitutions separating two very closely related species. A continuous process of functional divergence hidden under conserved phylotypic developmental outcomes requires reconsideration of the prevailing view that the essential genes in conserved regulatory networks are protected from the driving forces of evolutionary change.


2021 ◽  
Author(s):  
Olivia R A Tidswell ◽  
Matthew A Benton ◽  
Michael E Akam

In Drosophila, segmentation genes of the gap class form a regulatory network that positions segment boundaries and assigns segment identities. This gene network shows striking parallels with another gene network known as the neuroblast timer series. The neuroblast timer genes hunchback, Krüppel, nubbin, and castor are expressed in temporal sequence in neural stem cells to regulate the fate of their progeny. These same four genes are expressed in corresponding spatial sequence along the Drosophila blastoderm. The first two, hunchback and Krüppel, are canonical gap genes, but nubbin and castor have limited or no roles in Drosophila segmentation. Whether nubbin and castor regulate segmentation in insects with the ancestral, sequential mode of segmentation remains largely unexplored. We have investigated the expression and functions of nubbin and castor during segment patterning in the sequentially-segmenting beetle Tribolium. Using multiplex fluorescent in situ hybridisation, we show that Tc-hunchback, Tc-Krüppel, Tc-nubbin and Tc-castor are expressed sequentially in the segment addition zone of Tribolium, in the same order as they are expressed in Drosophila neuroblasts. Furthermore, simultaneous disruption of multiple genes reveals that Tc-nubbin regulates segment identity, but does so redundantly with two previously described gap/gap-like genes, Tc-giant and Tc-knirps. Knockdown of two or more of these genes results in the formation of up to seven pairs of ectopic legs on abdominal segments. We show that this homeotic transformation is caused by loss of abdominal Hox gene expression, likely due to expanded Tc-Krüppel expression. Our findings support the theory that the neuroblast timer series was co-opted for use in insect segment patterning, and contribute to our growing understanding of the evolution and function of the gap gene network outside of Drosophila.


2021 ◽  
Author(s):  
Jingxiang Shen ◽  
Feng Liu ◽  
Chao Tang

AbstractDespite variability in embryo size, the tissue, organ and body plan developin proportionwith embryo size, known as the scaling phenomenon. Scale-invariant patterning of gene expression is a common feature in development and regeneration, and can be generated by mechanisms such as scaling morphogen gradient and dynamic oscillation. However, whether and how static non-scaling morphogens (input) can induce a scaling gene expression (output) across the entire embryo is not clear. Here we show that scaling requirement sets severe constraints on the geometric structure of the input-output relation (the decoder), from which information about the regulation and mutants’ behavior can be deduced without going into any molecular details. We demonstrate that theDrosophilagap gene system achieves scaling in the way that is entirely consistent with our theory. Remarkably, following the geometry dictated by scaling, a parameter-free decoder correctly and quantitatively accounts for the gap gene expression patterns in nearly all morphogen mutants. Furthermore, the regulation logic and the coding/decoding strategy of the gap gene system can also be revealed from the decoder geometry. Our work provides a general theoretical framework on a large class of problems where scaling output is induced by non-scaling input, as well as a unified understanding of scaling, mutants’ behavior and regulation in theDrosophilagap gene and related systems.Significance StatementWithin a given species, fluctuation in egg or embryo size is unavoidable. Despite this, the gene expression pattern and hence the embryonic structure often scale in proportion with the body length. Thisscalingphenomenon is very common in development and regeneration, and has long fascinated scientists. In this paper, the authors address the question of whether and how a scaling gene expression pattern can originate from non-scaling signals (morphogens). They found that scaling has profound implications in the developmental programming -- properties and behaviors of the underlying gene network can be deduced from the scaling requirement. They demonstrated that the scaling in fruit fly embryogenesis indeed works in this way. Thus, although biological regulatory systems are very complex in general, it can be forced to exhibit simple macroscopic behaviors due to selection pressure, as demonstrated in this study.


2020 ◽  
Vol 460 (1) ◽  
pp. 20-31 ◽  
Author(s):  
Heike Rudolf ◽  
Christine Zellner ◽  
Ezzat El-Sherif
Keyword(s):  
Gap Gene ◽  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Anqi Huang ◽  
Jean-François Rupprecht ◽  
Timothy E Saunders

During development, many mutations cause increased variation in phenotypic outcomes, a phenomenon termed decanalization. Phenotypic discordance is often observed in the absence of genetic and environmental variations, but the mechanisms underlying such inter-individual phenotypic discordance remain elusive. Here, using the anterior-posterior (AP) patterning of the Drosophila embryo, we identified embryonic geometry as a key factor predetermining patterning outcomes under decanalizing mutations. With the wild-type AP patterning network, we found that AP patterning is robust to variations in embryonic geometry; segmentation gene expression remains reproducible even when the embryo aspect ratio is artificially reduced by more than twofold. In contrast, embryonic geometry is highly predictive of individual patterning defects under decanalized conditions of either increased bicoid (bcd) dosage or bcd knockout. We showed that the phenotypic discordance can be traced back to variations in the gap gene expression, which is rendered sensitive to the geometry of the embryo under mutations.


Hereditas ◽  
2019 ◽  
Vol 156 (1) ◽  
Author(s):  
Xiaoli Cai ◽  
Khalid Fahmy ◽  
Stefan Baumgartner

Abstract Background The formation of the bicoid (bcd) mRNA gradient is a crucial step for Bcd protein gradient formation in Drosophila. In the past, a microtubule (MT)-based cortical network had been shown to be indispensable for bcd mRNA transport to the posterior. Results We report the identification of a MT-binding protein CLASP/Chb as the first component associated with this cortical MT network. Since CLASPs in vertebrates were shown to serve as an acentriolar microtubule organization center (aMTOC) in concert with trans-Golgi proteins, we examined the effect of the Drosophila trans-Golgins on bcd localization and gradient formation. Using a genetic approach, we demonstrate that the Drosophila trans-Golgins dGCC88, dGolgin97 and dGCC185 indeed affect bcd mRNA localization during oocyte development. Consequently, the bcd mRNA is already mislocalized before the egg is fertilized. The expression domains of genes downstream of the hierarchy of bcd, e.g. of the gap gene empty spiracles or of the pair-rule gene even-skipped are changed, indicating an altered segmental anlagen, due to a faulty bcd gradient. Thus, at the end of embryogenesis, trans-Golgin mutants show bcd-like cuticle phenotypes. Conclusions Our data provides evidence that the Golgi as a cellular member of the secretory pathway exerts control on bcd localization which indicates that bcd gradient formation is probably more intricate than previously presumed.


Sign in / Sign up

Export Citation Format

Share Document