network rewiring
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 30)

H-INDEX

18
(FIVE YEARS 4)

Author(s):  
Shengran Wang ◽  
Yun Gong ◽  
Zun Wang ◽  
Jonathan Greenbaum ◽  
Hong‐Mei Xiao ◽  
...  

Author(s):  
Andrew Kenneth Carlson ◽  
Talia Young ◽  
Miguel A. Centeno ◽  
Simon A Levin ◽  
Daniel I Rubenstein
Keyword(s):  

2021 ◽  
Author(s):  
Jacobo Sanchez ◽  
Pushpinder Pal Kaur ◽  
Isaiah C.M. Pabuayon ◽  
Naga Bhushana Rao Karampudi ◽  
Ai Kitazumi ◽  
...  

AbstractIntrogression of major-effect QTLs is an important component of rice breeding for yield-retention under drought. While largely effective, the maximum potentials of such QTLs have not been consistent across genetic backgrounds. We hypothesized that synergism or antagonism with additive-effect peripheral genes across the background could either enhance or undermine the QTL effects. To elucidate the molecular underpinnings of such interaction, we dissected qDTY12.1 synergy with numerous peripheral genes in context of network rewiring effects. By integrative transcriptome profiling and network modeling, we identified the DECUSSATE (OsDEC) within qDTY12.1 as the core of the synergy and shared by two sibling introgression lines in IR64 genetic background, i.e., LPB (low-yield penalty) and HPB (high-yield penalty). OsDEC is expressed in flag leaves and induced by progressive drought at booting stage in LPB but not in HPB. The unique OsDEC signature in LPB is coordinated with 35 upstream and downstream peripheral genes involved in floral development through the cytokinin signaling pathway, which are lacking in HPB. Results further support the differential network rewiring effects through genetic coupling-uncoupling between qDTY12.1 and other upstream and downstream peripheral genes across the distinct genetic backgrounds of LPB and HPB. We propose that the functional DEC-network in LPB defines a mechanism for early flowering as a means for avoiding the depletion of photosyntate needed for reproductive growth due to drought. Its impact on yield-retention is likely through the timely establishment of stronger source-sink dynamics that sustains a robust reproductive transition under drought.Author summaryWhile the Green Revolution of the 1960’s significantly increased rice grain yields through the creation of high-yielding varieties for high input systems, current marginal climates pose a significant challenge for providing consistent yield. In rice growing regions of the world, drought affects the livelihood of small-scale and subsistence farmers by inflicting significant yield penalties to their production systems. Breeding of next-generation rice varieties with optimal balance of survivability and productivity traits will be key to providing consistent yields year to year. Within this paradigm, the use of large effect QTLs such as qDTY12.1 to improve yield retention under drought have been largely successful. By integrating the use of high resolution transcriptome datasets with a focused biological interrogation of agronomic results from this and previous studies, we uncovered a putative functional genetic network, anchored by the DECUSSATE gene (OsDEC) within qDTY12.1, that effectively minimizes drought penalties to yield by driving cellular processes that culminate in timely flowering that maximizes the use of photosynthetic sources for efficient reproduductive transition and ultimately seed development. Our study further illuminates the qDTY12.1 function and speaks to the misconception that qDTY introgression alone is sufficient for providing consistently large positive effects to yield retention under reproductive stage drought.


2020 ◽  
Vol 11 ◽  
Author(s):  
James D. Wade ◽  
Xiao-Kang Lun ◽  
Nevena Zivanovic ◽  
Eberhard O. Voit ◽  
Bernd Bodenmiller

Intracellular signaling pathways are at the core of cellular information processing. The states of these pathways and their inputs determine signaling dynamics and drive cell function. Within a cancerous tumor, many combinations of cell states and microenvironments can lead to dramatic variations in responses to treatment. Network rewiring has been thought to underlie these context-dependent differences in signaling; however, from a biochemical standpoint, rewiring of signaling networks should not be a prerequisite for heterogeneity in responses to stimuli. Here we address this conundrum by analyzing an in vitro model of the epithelial mesenchymal transition (EMT), a biological program implicated in increased tumor invasiveness, heterogeneity, and drug resistance. We used mass cytometry to measure EGF signaling dynamics in the ERK and AKT signaling pathways before and after induction of EMT in Py2T murine breast cancer cells. Analysis of the data with standard network inference methods suggested EMT-dependent network rewiring. In contrast, use of a modeling approach that adequately accounts for single-cell variation demonstrated that a single reaction-based pathway model with constant structure and near-constant parameters is sufficient to represent differences in EGF signaling across EMT. This result indicates that rewiring of the signaling network is not necessary for heterogeneous responses to a signal and that unifying reaction-based models should be employed for characterization of signaling in heterogeneous environments, such as cancer.


2020 ◽  
Vol 49 (D1) ◽  
pp. D552-D561
Author(s):  
Ruifeng Hu ◽  
Haodong Xu ◽  
Peilin Jia ◽  
Zhongming Zhao

Abstract Mutations in kinases are abundant and critical to study signaling pathways and regulatory roles in human disease, especially in cancer. Somatic mutations in kinase genes can affect drug treatment, both sensitivity and resistance, to clinically used kinase inhibitors. Here, we present a newly constructed database, KinaseMD (kinase mutations and drug response), to structurally and functionally annotate kinase mutations. KinaseMD integrates 679 374 somatic mutations, 251 522 network-rewiring events, and 390 460 drug response records curated from various sources for 547 kinases. We uniquely annotate the mutations and kinase inhibitor response in four types of protein substructures (gatekeeper, A-loop, G-loop and αC-helix) that are linked to kinase inhibitor resistance in literature. In addition, we annotate functional mutations that may rewire kinase regulatory network and report four phosphorylation signals (gain, loss, up-regulation and down-regulation). Overall, KinaseMD provides the most updated information on mutations, unique annotations of drug response especially drug resistance and functional sites of kinases. KinaseMD is accessible at https://bioinfo.uth.edu/kmd/, having functions for searching, browsing and downloading data. To our knowledge, there has been no systematic annotation of these structural mutations linking to kinase inhibitor response. In summary, KinaseMD is a centralized database for kinase mutations and drug response.


2020 ◽  
Vol 13 (8) ◽  
pp. 1203-1218 ◽  
Author(s):  
Yan Li ◽  
Yang Chen ◽  
Lu Zhou ◽  
Shengjie You ◽  
Heng Deng ◽  
...  

2020 ◽  
Author(s):  
Marilyne Labrie ◽  
Allen Li ◽  
Allison Creason ◽  
Courtney Betts ◽  
Jamie Keck ◽  
...  

Due to complexity of advanced epithelial cancers, it is necessary to implement patient specific combination therapies if we are to markedly improve patient outcomes. However, our ability to select and implement patient specific combination therapies based on dynamic molecular changes in the tumor and tumor ecosystem in response to therapy remains extremely limited. In a pilot study, we evaluated the feasibility of real-time deep analysis of serial tumor samples from triple negative breast cancer patients to identify mechanisms of resistance and treatment opportunities as they emerge under therapeutic stress engendered by poly-ADP-ribose polymerase (PARP) inhibitors (PARPi). Although PARP inhibition was consistently observed in all patients, deep molecular analysis of the tumor and its ecosystem revealed insights into potentially effective therapeutic PARPi combinations. In a BRCA-mutant basal breast cancer exceptional long-term survivor, we noted striking PARPi-induced tumor destruction accompanied by a marked infiltration of immune cells containing CD8 effector cells, consistent with pre-clinical evidence for association between STING mediated immune activation and benefit from PARPi and immunotherapy. Tumor cells in the exceptional responder underwent extensive protein network rewiring in response to PARP inhibition. In contrast, there were minimal changes in the ecosystem of a luminal androgen receptor (LAR) rapid progressor in response to PARPi likely due to indifference to the effects of PARP inhibition. In this rapid progressor, there was minimal evidence of immune activation or protein network rewiring in response to PARPi, despite PARP being inhibited, and no clinical benefit was noted for this participant. Together, deep real-time analysis of longitudinal biopsies identified a suite of PARPi-induced emergent changes including immune activation, DNA damage checkpoint activation, apoptosis and signaling pathways including RTK, PI3K-AKT and RAS-MAPK, that could be used to select patient specific combination therapies, based on tumor and immune state changes that are likely to benefit specific patients.


2020 ◽  
Author(s):  
Pernille Seiffert ◽  
Katrine Bugge ◽  
Mads Nygaard ◽  
Gitte W. Haxholm ◽  
Jacob H. Martinsen ◽  
...  

Abstract Background: Class 1 cytokine receptors (C1CRs) are single-pass transmembrane proteins responsible for transmitting signals between the outside and the inside of cells. Remarkably, they orchestrate key biological processes such as proliferation, differentiation, immunity and growth through long disordered intracellular domains (ICDs), but without having intrinsic kinase activity. Despite these key roles, their characteristics remain rudimentarily understood. Methods: The current paper asks the question of why disorder has evolved to govern signaling of C1CRs by reviewing the literature in combination with new sequence and biophysical analyses of chain properties across the family. Results: We uncover that the C1CR-ICDs are fully disordered and brimming with SLiMs. Many of these SLiMs are overlapping, jointly signifying a complex regulation of interactions, including network rewiring by isoforms. The C1CR-ICDs have unique properties that distinguish them from most IDPs and we forward the perception that the C1CR-ICDs are far from simple strings with constitutively bound kinases. Rather, they carry both organizational and operational features left uncovered within their disorder, including mechanisms and complexities of regulatory functions. Conclusions: Critically, the understanding of the fascinating ability of these long, completely disordered chains to orchestrate complex cellular signaling pathways is still in its infancy, and we urge a perceptional shift away from the current simplistic view towards uncovering their full functionalities and potential.


Sign in / Sign up

Export Citation Format

Share Document