scholarly journals Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Harriet Lane-Serff ◽  
Paula MacGregor ◽  
Edward D Lowe ◽  
Mark Carrington ◽  
Matthew K Higgins

The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50o kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface.

2014 ◽  
Author(s):  
Harriet Lane-Serff ◽  
Paula MacGregor ◽  
Edward D Lowe ◽  
Mark Carrington ◽  
Matthew K Higgins

2019 ◽  
Vol 98 ◽  
pp. 181-188 ◽  
Author(s):  
Irina Matetovici ◽  
Linda De Vooght ◽  
Jan Van Den Abbeele

2019 ◽  
Vol 116 (45) ◽  
pp. 22774-22782 ◽  
Author(s):  
Kirsty R. McWilliam ◽  
Alasdair Ivens ◽  
Liam J. Morrison ◽  
Monica R. Mugnier ◽  
Keith R. Matthews

African trypanosomes use an extreme form of antigenic variation to evade host immunity, involving the switching of expressed variant surface glycoproteins by a stochastic and parasite-intrinsic process. Parasite development in the mammalian host is another feature of the infection dynamic, with trypanosomes undergoing quorum sensing (QS)-dependent differentiation between proliferative slender forms and arrested, transmissible, stumpy forms. Longstanding experimental studies have suggested that the frequency of antigenic variation and transmissibility may be linked, antigen switching being higher in developmentally competent, fly-transmissible, parasites (“pleomorphs”) than in serially passaged “monomorphic” lines that cannot transmit through flies. Here, we have directly tested this tenet of the infection dynamic by using 2 experimental systems to reduce pleomorphism. Firstly, lines were generated that inducibly lose developmental capacity through RNAi-mediated silencing of the QS signaling machinery (“inducible monomorphs”). Secondly, de novo lines were derived that have lost the capacity for stumpy formation by serial passage (“selected monomorphs”) and analyzed for their antigenic variation in comparison to isogenic preselected populations. Analysis of both inducible and selected monomorphs has established that antigen switch frequency and developmental capacity are independently selected traits. This generates the potential for diverse infection dynamics in different parasite populations where the rate of antigenic switching and transmission competence are uncoupled. Further, this may support the evolution, maintenance, and spread of important trypanosome variants such as Trypanosoma brucei evansi that exploit mechanical transmission.


Parasitology ◽  
1998 ◽  
Vol 116 (S1) ◽  
pp. S23-S28 ◽  
Author(s):  
I. Maudlin ◽  
S. C. Welburn ◽  
P. J. M. Milligan

SummaryThe effect of trypanosome infection on vector survival was observed in a line of Glossina morsitans morsitans selected for susceptibility to trypanosome infection. The differential effects of midgut and salivary gland infections on survival were examined by exposing flies to infection with either Trypanosoma congolense which colonizes midgut and mouthparts or Trypanosoma brucei rhodesiense which colonizes midgut and salivary glands. A comparison of the survival distributions of uninfected flies with those exposed to infection showed that salivary gland infection significantly reduces tsetse survival; midgut infection had little or no effect on the survival of tsetse. The significance of these findings is discussed in relation to the vectorial capacity of wild flies.


2014 ◽  
Vol 106 (2) ◽  
pp. 684a ◽  
Author(s):  
Hui Xu ◽  
Xiaojing He ◽  
Hui Zheng ◽  
Lily Huang ◽  
Fajian Hou ◽  
...  

Author(s):  
Kirsten J. Meyer ◽  
Theresa A. Shapiro

Trypanosoma brucei subspecies cause African sleeping sickness in humans, an infection that is commonly fatal if not treated, and available therapies are limited. Previous studies have shown that heat shock protein 90 (Hsp90) inhibitors have potent and vivid activity against bloodstream form trypanosomes. Hsp90s are phylogenetically conserved and essential catalysts that function at the crux of cell biology, where they ensure the proper folding of proteins and their assembly into multicomponent complexes. To assess the specificity of Hsp90 inhibitors and further define the role of Hsp90s in African trypanosomes, we used RNAi to knockdown cytosolic and mitochondrial Hsp90s (HSP83 and HSP84, respectively). Loss of either protein led to cell death but the phenotypes were distinctly different. Depletion of cytosolic HSP83 closely mimicked the consequences of chemically depleting Hsp90 activity with inhibitor 17-AAG. In these cells cytokinesis was severely disrupted and segregation of the kinetoplast (the massive mitochondrial DNA structure unique to this family of eukaryotic pathogens) was impaired, leading to cells with abnormal kDNA structures. Quite differently, knockdown of mitochondrial HSP84 did not impair cytokinesis but halted the initiation of new kDNA synthesis, generating cells without kDNA. These findings highlight the central role for Hsp90s in chaperoning cell cycle regulators in trypanosomes, reveal their unique function in kinetoplast replication, and reinforce their specificity and value as drug targets.


2006 ◽  
Vol 5 (8) ◽  
pp. 1276-1286 ◽  
Author(s):  
Sara D. Faulkner ◽  
Monika W. Oli ◽  
Rudo Kieft ◽  
Laura Cotlin ◽  
Justin Widener ◽  
...  

ABSTRACT The host range of African trypanosomes is influenced by innate protective molecules in the blood of primates. A subfraction of human high-density lipoprotein (HDL) containing apolipoprotein A-I, apolipoprotein L-I, and haptoglobin-related protein is toxic to Trypanosoma brucei brucei but not the human sleeping sickness parasite Trypanosoma brucei rhodesiense. It is thought that T. b. rhodesiense evolved from a T. b. brucei-like ancestor and expresses a defense protein that ablates the antitrypanosomal activity of human HDL. To directly investigate this possibility, we developed an in vitro selection to generate human HDL-resistant T. b. brucei. Here we show that conversion of T. b. brucei from human HDL sensitive to resistant correlates with changes in the expression of the variant surface glycoprotein (VSG) and abolished uptake of the cytotoxic human HDLs. Complete transcriptome analysis of the HDL-susceptible and -resistant trypanosomes confirmed that VSG switching had occurred but failed to reveal the expression of other genes specifically associated with human HDL resistance, including the serum resistance-associated gene (SRA) of T. b. rhodesiense. In addition, we found that while the original active expression site was still utilized, expression of three expression site-associated genes (ESAG) was altered in the HDL-resistant trypanosomes. These findings demonstrate that resistance to human HDLs can be acquired by T. b. brucei.


Sign in / Sign up

Export Citation Format

Share Document