scholarly journals 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Melody G Campbell ◽  
David Veesler ◽  
Anchi Cheng ◽  
Clinton S Potter ◽  
Bridget Carragher

Recent developments in detector hardware and image-processing software have revolutionized single particle cryo-electron microscopy (cryoEM) and led to a wave of near-atomic resolution (typically ∼3.3 Å) reconstructions. Reaching resolutions higher than 3 Å is a prerequisite for structure-based drug design and for cryoEM to become widely interesting to pharmaceutical industries. We report here the structure of the 700 kDa Thermoplasma acidophilum 20S proteasome (T20S), determined at 2.8 Å resolution by single-particle cryoEM. The quality of the reconstruction enables identifying the rotameric conformation adopted by some amino-acid side chains (rotamers) and resolving ordered water molecules, in agreement with the expectations for crystal structures at similar resolutions. The results described in this manuscript demonstrate that single particle cryoEM is capable of competing with X-ray crystallography for determination of protein structures of suitable quality for rational drug design.

2006 ◽  
Vol 12 (S02) ◽  
pp. 372-373
Author(s):  
J Ortega ◽  
J Iwanczyk ◽  
K Sadre-Bazzaz ◽  
K Ferrell ◽  
E Kondrashkina ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2006


2020 ◽  
Vol 21 (7) ◽  
pp. 2527 ◽  
Author(s):  
Qingxin Li ◽  
CongBao Kang

Nuclear magnetic resonance (NMR) spectroscopy plays important roles in structural biology and drug discovery, as it is a powerful tool to understand protein structures, dynamics, and ligand binding under physiological conditions. The protease of flaviviruses is an attractive target for developing antivirals because it is essential for the maturation of viral proteins. High-resolution structures of the proteases in the absence and presence of ligands/inhibitors were determined using X-ray crystallography, providing structural information for rational drug design. Structural studies suggest that proteases from Dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV) exist in open and closed conformations. Solution NMR studies showed that the closed conformation is predominant in solution and should be utilized in structure-based drug design. Here, we reviewed solution NMR studies of the proteases from these viruses. The accumulated studies demonstrated that NMR spectroscopy provides additional information to understand conformational changes of these proteases in the absence and presence of substrates/inhibitors. In addition, NMR spectroscopy can be used for identifying fragment hits that can be further developed into potent protease inhibitors.


2017 ◽  
Vol 61 (5) ◽  
pp. 543-560 ◽  
Author(s):  
Andreas Boland ◽  
Leifu Chang ◽  
David Barford

Structure-based drug design plays a central role in therapeutic development. Until recently, protein crystallography and NMR have dominated experimental approaches to obtain structural information of biological molecules. However, in recent years rapid technical developments in single particle cryo-electron microscopy (cryo-EM) have enabled the determination to near-atomic resolution of macromolecules ranging from large multi-subunit molecular machines to proteins as small as 64 kDa. These advances have revolutionized structural biology by hugely expanding both the range of macromolecules whose structures can be determined, and by providing a description of macromolecular dynamics. Cryo-EM is now poised to similarly transform the discipline of structure-based drug discovery. This article reviews the potential of cryo-EM for drug discovery with reference to protein ligand complex structures determined using this technique.


2019 ◽  
Vol 25 (39) ◽  
pp. 5279-5290
Author(s):  
R.M. Johnson ◽  
S. Rawson ◽  
M.J. McPhillie ◽  
C.W.G. Fishwick ◽  
S.P. Muench

Background: Parasite diseases are a huge burden on human health causing significant morbidity and mortality. However, parasite structure based drug discovery programmes have been hindered by a lack of high resolution structural information from parasite derived proteins and have often relied upon homology models from mammalian systems. The recent renaissance in electron microscopy (EM) has caused a dramatic rise in the number of structures being determined at high resolution and subsequently enabled it to be thought of as a tool in drug discovery. Results: In this review, we discuss the challenges associated with the structural determination of parasite proteins including the difficulties in obtaining sufficient quantities of protein. We then discuss the reasons behind the resurgence in EM, how it may overcome some of these challenges and provide examples of EM derived parasite protein structures. Finally, we discuss the challenges which EM needs to overcome before it is used as a mainstream technique in anti-parasite drug discovery. Conclusions: This review reports the progress that has been made in obtaining sufficient quantities of proteins for structural studies and the role EM may play in future structure based drug design programs. The outlook for future structure based drug design programs against some of the most devastating parasite diseases looks promising.


2019 ◽  
Vol 20 (17) ◽  
pp. 4186 ◽  
Author(s):  
Emeka Nwanochie ◽  
Vladimir N. Uversky

Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques. Despite their wide utilization in protein structure determination, these two techniques have logical limitations, with X-ray crystallography being unsuitable for the analysis of highly dynamic structures and with NMR spectroscopy being restricted to the analysis of relatively small proteins. In recent years, we have witnessed an explosive development of the techniques based on Cryo-electron microscopy (Cryo-EM) for structural characterization of biological molecules. In fact, single-particle Cryo-EM is a special niche as it is a technique of choice for the structural analysis of large, structurally heterogeneous, and dynamic complexes. Here, sub-nanometer atomic resolution can be achieved (i.e., resolution below 10 Å) via single-particle imaging of non-crystalline specimens, with accurate 3D reconstruction being generated based on the computational averaging of multiple 2D projection images of the same particle that was frozen rapidly in solution. We provide here a brief overview of single-particle Cryo-EM and show how Cryo-EM has revolutionized structural investigations of membrane proteins. We also show that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.


2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


Science ◽  
2018 ◽  
Vol 361 (6405) ◽  
pp. 876-880 ◽  
Author(s):  
Yifan Cheng

Cryo–electron microscopy, or simply cryo-EM, refers mainly to three very different yet closely related techniques: electron crystallography, single-particle cryo-EM, and electron cryotomography. In the past few years, single-particle cryo-EM in particular has triggered a revolution in structural biology and has become a newly dominant discipline. This Review examines the fascinating story of its start and evolution over the past 40-plus years, delves into how and why the recent technological advances have been so groundbreaking, and briefly considers where the technique may be headed in the future.


Sign in / Sign up

Export Citation Format

Share Document