scholarly journals Author response: Central neural circuitry mediating courtship song perception in male Drosophila

2015 ◽  
Author(s):  
Chuan Zhou ◽  
Romain Franconville ◽  
Alexander G Vaughan ◽  
Carmen C Robinett ◽  
Vivek Jayaraman ◽  
...  
eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Chuan Zhou ◽  
Romain Franconville ◽  
Alexander G Vaughan ◽  
Carmen C Robinett ◽  
Vivek Jayaraman ◽  
...  

Animals use acoustic signals across a variety of social behaviors, particularly courtship. In Drosophila, song is detected by antennal mechanosensory neurons and further processed by second-order aPN1/aLN(al) neurons. However, little is known about the central pathways mediating courtship hearing. In this study, we identified a male-specific pathway for courtship hearing via third-order ventrolateral protocerebrum Projection Neuron 1 (vPN1) neurons and fourth-order pC1 neurons. Genetic inactivation of vPN1 or pC1 disrupts song-induced male-chaining behavior. Calcium imaging reveals that vPN1 responds preferentially to pulse song with long inter-pulse intervals (IPIs), while pC1 responses to pulse song closely match the behavioral chaining responses at different IPIs. Moreover, genetic activation of either vPN1 or pC1 induced courtship chaining, mimicking the behavioral response to song. These results outline the aPN1-vPN1-pC1 pathway as a labeled line for the processing and transformation of courtship song in males.


2017 ◽  
Author(s):  
Yun Ding ◽  
Joshua L. Lillvis ◽  
Jessica Cande ◽  
Gordon J. Berman ◽  
Benjamin J. Arthur ◽  
...  

AbstractThe neural basis for behavioural evolution is poorly understood. Functional comparisons of homologous neurons may reveal how neural circuitry contributes to behavioural evolution, but homologous neurons cannot be identified and manipulated in most taxa. Here, we compare the function of homologous courtship song neurons by exporting neurogenetic reagents that label identified neurons in Drosophila melanogaster to D. yakuba. We found a conserved role for a cluster of brain neurons that establish a persistent courtship state. In contrast, a descending neuron with conserved electrophysiological properties drives different song types in each species. Our results suggest that song evolved, in part, due to changes in the neural circuitry downstream of this descending neuron. This experimental approach can be generalized to other neural circuits and therefore provides an experimental framework for studying how the nervous system has evolved to generate behavioural diversity.


Author(s):  
Hania J Pavlou ◽  
Andrew C Lin ◽  
Megan C Neville ◽  
Tetsuya Nojima ◽  
Fengqiu Diao ◽  
...  

Author(s):  
Luis A Bezares-Calderón ◽  
Jürgen Berger ◽  
Sanja Jasek ◽  
Csaba Verasztó ◽  
Sara Mendes ◽  
...  

2020 ◽  
Author(s):  
Gesa F. Dinges ◽  
Alexander S. Chockley ◽  
Till Bockemühl ◽  
Kei Ito ◽  
Alexander Blanke ◽  
...  

2020 ◽  
Author(s):  
Charles A. Williams ◽  
Kimberly E. Miller ◽  
Nisa P. Williams ◽  
Christine V. Portfors ◽  
David J. Perkel

Sign in / Sign up

Export Citation Format

Share Document