scholarly journals Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Juan Tian ◽  
Libo Han ◽  
Zhidi Feng ◽  
Guangda Wang ◽  
Weiwei Liu ◽  
...  

Microtubules (MTs) and actin filaments (F-actin) function cooperatively to regulate plant cell morphogenesis. However, the mechanisms underlying the crosstalk between these two cytoskeletal systems, particularly in cell shape control, remain largely unknown. In this study, we show that introduction of the MyTH4-FERM tandem into KCBP (kinesin-like calmodulin-binding protein) during evolution conferred novel functions. The MyTH4 domain and the FERM domain in the N-terminal tail of KCBP physically bind to MTs and F-actin, respectively. During trichome morphogenesis, KCBP distributes in a specific cortical gradient and concentrates at the branching sites and the apexes of elongating branches, which lack MTs but have cortical F-actin. Further, live-cell imaging and genetic analyses revealed that KCBP acts as a hub integrating MTs and actin filaments to assemble the required cytoskeletal configuration for the unique, polarized diffuse growth pattern during trichome cell morphogenesis. Our findings provide significant insights into the mechanisms underlying cytoskeletal regulation of cell shape determination.

Development ◽  
1997 ◽  
Vol 124 (19) ◽  
pp. 3779-3786 ◽  
Author(s):  
U. Folkers ◽  
J. Berger ◽  
M. Hulskamp

Cell morphogenesis, i.e. the acquisition of a particular cell shape, can be examined genetically in the three-branched trichomes that differentiate from single epidermal cells on the leaves of Arabidopsis thaliana. In normal development, the growing trichome cell undergoes two successive branching events, resulting in a proximal side stem and a distal main stem which subsequently splits in two branches. Using new and previously described trichome mutants, we have analyzed the branching pattern in single and double mutants affecting branch number or cell size in order to determine underlying mechanisms. Our results suggest that primary branching is genetically distinct from subsequent branching events and that the latter, secondary events are initiated in response to positive and negative regulators of branching as well as subject to control by cell growth. We propose a model of how trichome cell morphogenesis is regulated during normal development.


2002 ◽  
Vol 14 (1) ◽  
pp. 101-118 ◽  
Author(s):  
Jin-Long Qiu ◽  
Ross Jilk ◽  
M. David Marks ◽  
Daniel B. Szymanski

Sign in / Sign up

Export Citation Format

Share Document