scholarly journals Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Candice L Wike ◽  
Hillary K Graves ◽  
Reva Hawkins ◽  
Matthew D Gibson ◽  
Michelle B Ferdinand ◽  
...  

Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation.

2010 ◽  
Vol 21 (14) ◽  
pp. 2371-2383 ◽  
Author(s):  
Kuo-Tai Yang ◽  
Shu-Kuei Li ◽  
Chih-Chieh Chang ◽  
Chieh-Ju C. Tang ◽  
Yi-Nan Lin ◽  
...  

We previously isolated Aurora-C/Aie1 in a screen for kinases expressed in mouse sperm and eggs. Here, we show the localization of endogenous Aurora-C and examine its roles during female mouse meiosis. Aurora-C was detected at the centromeres and along the chromosome arms in prometaphase I–metaphase I and was concentrated at centromeres at metaphase II, in which Aurora-C also was phosphorylated at Thr171. During the anaphase I–telophase I transition, Aurora-C was dephosphorylated and relocalized to the midzone and midbody. Microinjection of the kinase-deficient Aurora-C (AurC-KD) mRNA into mouse oocytes significantly inhibited Aurora-C activity and caused multiple defects, including chromosome misalignment, abnormal kinetochore–microtubule attachment, premature chromosome segregation, and cytokinesis failure in meiosis I. Furthermore, AurC-KD reduced Aurora-C and histone H3 phosphorylation and inhibited kinetochore localization of Bub1 and BubR1. Similar effects also were observed in the oocytes injected with INCNEP-delIN mRNAs, in which the Aurora-C binding motif was removed. The most dramatic effect observed in AurC-KD–injected oocytes is cytokinesis failure in meiosis I, resulting in producing large polyploid oocytes, a pattern similar to Aurora-C deficiency human spermatozoa. Surprisingly, we detected no Aurora-B protein in mouse oocytes. We propose that Aurora-C, but not Aurora-B, plays essential roles in female mouse meiosis.


Cell ◽  
2001 ◽  
Vol 105 (4) ◽  
pp. 433-443 ◽  
Author(s):  
Yanming Wang ◽  
Weiguo Zhang ◽  
Ye Jin ◽  
Jørgen Johansen ◽  
Kristen M. Johansen

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudia Baumann ◽  
Wei Ma ◽  
Xiaotian Wang ◽  
Muthugapatti K. Kandasamy ◽  
Maria M. Viveiros ◽  
...  

Abstract Centromeres are epigenetically determined nuclear domains strictly required for chromosome segregation and genome stability. However, the mechanisms regulating centromere and kinetochore chromatin modifications are not known. Here, we demonstrate that LSH is enriched at meiotic kinetochores and its targeted deletion induces centromere instability and abnormal chromosome segregation. Superresolution chromatin analysis resolves LSH at the inner centromere and kinetochores during oocyte meiosis. LSH knockout pachytene oocytes exhibit reduced HDAC2 and DNMT-1. Notably, mutant oocytes show a striking increase in histone H3 phosphorylation at threonine 3 (H3T3ph) and accumulation of major satellite transcripts in both prophase-I and metaphase-I chromosomes. Moreover, knockout oocytes exhibit centromere fusions, ectopic kinetochore formation and abnormal exchange of chromatin fibers between paired bivalents and asynapsed chromosomes. Our results indicate that loss of LSH affects the levels and chromosomal localization of H3T3ph and provide evidence that, by maintaining transcriptionally repressive heterochromatin, LSH may be essential to prevent deleterious meiotic recombination events at repetitive centromeric sequences.


2016 ◽  
Author(s):  
Candice L Wike ◽  
Hillary K Graves ◽  
Reva Hawkins ◽  
Matthew D Gibson ◽  
Michelle B Ferdinand ◽  
...  

2006 ◽  
Vol 282 (7) ◽  
pp. 4400-4407 ◽  
Author(s):  
Barbara A. Burkhart ◽  
Sarah B. Kennett ◽  
Trevor K. Archer

Histone H3 phosphorylation has been linked to various environmental stress responses and specific chromatin structure. The role of H3 phosphorylation in the osmotic stress response was investigated on the mouse mammary tumor virus (MMTV) promoter in different chromatin configurations. Hormone-dependent transcription from the MMTV promoter is repressed by osmotic stress when the promoter is integrated and has a normal chromatin structure. However, when the MMTV promoter is transiently transfected, the chromatin structure is less organized, and hormone induction is not affected by osmotic stress. On the integrated MMTV promoter, phosphorylation of histone H3 serine 10 and 28 increases in response to osmotic stress, but the transient promoter shows no change. Hormone-dependent glucocorticoid receptor binding is reduced on the repressed promoter, and elevated H3 phosphorylation is temporally correlated with maximal MMTV repression Additionally, the protein kinase C inhibitor rottlerin, but not other kinase inhibitors, blocks both histone H3 phosphorylation and osmotic repression of MMTV transcription. Glucocorticoid receptor binding is inversely correlated with H3 phosphorylation, suggesting that displacement of the glucocorticoid receptor from the promoter is due to H3 phosphorylation and is the mechanism for the osmotic repression of hormone-dependent transcription.


2014 ◽  
Vol 42 (8) ◽  
pp. 4922-4933 ◽  
Author(s):  
Justin A. North ◽  
Marek Šimon ◽  
Michelle B. Ferdinand ◽  
Matthew A. Shoffner ◽  
Jonathan W. Picking ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document