scholarly journals Aurora-C Kinase Deficiency Causes Cytokinesis Failure in Meiosis I and Production of Large Polyploid Oocytes in Mice

2010 ◽  
Vol 21 (14) ◽  
pp. 2371-2383 ◽  
Author(s):  
Kuo-Tai Yang ◽  
Shu-Kuei Li ◽  
Chih-Chieh Chang ◽  
Chieh-Ju C. Tang ◽  
Yi-Nan Lin ◽  
...  

We previously isolated Aurora-C/Aie1 in a screen for kinases expressed in mouse sperm and eggs. Here, we show the localization of endogenous Aurora-C and examine its roles during female mouse meiosis. Aurora-C was detected at the centromeres and along the chromosome arms in prometaphase I–metaphase I and was concentrated at centromeres at metaphase II, in which Aurora-C also was phosphorylated at Thr171. During the anaphase I–telophase I transition, Aurora-C was dephosphorylated and relocalized to the midzone and midbody. Microinjection of the kinase-deficient Aurora-C (AurC-KD) mRNA into mouse oocytes significantly inhibited Aurora-C activity and caused multiple defects, including chromosome misalignment, abnormal kinetochore–microtubule attachment, premature chromosome segregation, and cytokinesis failure in meiosis I. Furthermore, AurC-KD reduced Aurora-C and histone H3 phosphorylation and inhibited kinetochore localization of Bub1 and BubR1. Similar effects also were observed in the oocytes injected with INCNEP-delIN mRNAs, in which the Aurora-C binding motif was removed. The most dramatic effect observed in AurC-KD–injected oocytes is cytokinesis failure in meiosis I, resulting in producing large polyploid oocytes, a pattern similar to Aurora-C deficiency human spermatozoa. Surprisingly, we detected no Aurora-B protein in mouse oocytes. We propose that Aurora-C, but not Aurora-B, plays essential roles in female mouse meiosis.

2001 ◽  
Vol 152 (4) ◽  
pp. 669-682 ◽  
Author(s):  
Régis Giet ◽  
David M. Glover

Aurora/Ipl1-related kinases are a conserved family of enzymes that have multiple functions during mitotic progression. Although it has been possible to use conventional genetic analysis to dissect the function of aurora, the founding family member in Drosophila (Glover, D.M., M.H. Leibowitz, D.A. McLean, and H. Parry. 1995. Cell. 81:95–105), the lack of mutations in a second aurora-like kinase gene, aurora B, precluded this approach. We now show that depleting Aurora B kinase using double-stranded RNA interference in cultured Drosophila cells results in polyploidy. aurora B encodes a passenger protein that associates first with condensing chromatin, concentrates at centromeres, and then relocates onto the central spindle at anaphase. Cells depleted of the Aurora B kinase show only partial chromosome condensation at mitosis. This is associated with a reduction in levels of the serine 10 phosphorylated form of histone H3 and a failure to recruit the Barren condensin protein onto chromosomes. These defects are associated with abnormal segregation resulting from lagging chromatids and extensive chromatin bridging at anaphase, similar to the phenotype of barren mutants (Bhat, M.A., A.V. Philp, D.M. Glover, and H.J. Bellen. 1996. Cell. 87:1103–1114.). The majority of treated cells also fail to undertake cytokinesis and show a reduced density of microtubules in the central region of the spindle. This is accompanied by a failure to correctly localize the Pavarotti kinesin-like protein, essential for this process. We discuss these conserved functions of Aurora B kinase in chromosome transmission and cytokinesis.


2001 ◽  
Vol 276 (28) ◽  
pp. 26656-26665 ◽  
Author(s):  
Mairead E. Murnion ◽  
Richard R. Adams ◽  
Deborah M. Callister ◽  
C. David Allis ◽  
William C. Earnshaw ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudia Baumann ◽  
Wei Ma ◽  
Xiaotian Wang ◽  
Muthugapatti K. Kandasamy ◽  
Maria M. Viveiros ◽  
...  

Abstract Centromeres are epigenetically determined nuclear domains strictly required for chromosome segregation and genome stability. However, the mechanisms regulating centromere and kinetochore chromatin modifications are not known. Here, we demonstrate that LSH is enriched at meiotic kinetochores and its targeted deletion induces centromere instability and abnormal chromosome segregation. Superresolution chromatin analysis resolves LSH at the inner centromere and kinetochores during oocyte meiosis. LSH knockout pachytene oocytes exhibit reduced HDAC2 and DNMT-1. Notably, mutant oocytes show a striking increase in histone H3 phosphorylation at threonine 3 (H3T3ph) and accumulation of major satellite transcripts in both prophase-I and metaphase-I chromosomes. Moreover, knockout oocytes exhibit centromere fusions, ectopic kinetochore formation and abnormal exchange of chromatin fibers between paired bivalents and asynapsed chromosomes. Our results indicate that loss of LSH affects the levels and chromosomal localization of H3T3ph and provide evidence that, by maintaining transcriptionally repressive heterochromatin, LSH may be essential to prevent deleterious meiotic recombination events at repetitive centromeric sequences.


2020 ◽  
Author(s):  
Julien Berthezene ◽  
Céline Reyes ◽  
Tong Li ◽  
Stéphane Coulon ◽  
Pascal Bernard ◽  
...  

ABSTRACTIn mitosis, while the importance of kinetochore-microtubule attachment has been known for many years, increasing evidence suggests that telomere dysfunctions also perturb chromosome segregation by contributing to the formation of chromatin bridges at anaphase. Recent evidence suggests that Aurora B ensures proper chromosome segregation during mitosis not only by controlling kinetochore-microtubule attachment but also by regulating telomere and chromosome arm separation. However, whether and how Aurora-B governs telomere separation during meiosis has remained unknown. Here, we show that fission yeast Aurora B localizes at telomeres during meiosis I and promotes telomere separation independently of the meiotic cohesin Rec8. In meiosis II, Aurora-B controls kinetochore-microtubule attachment but appears dispensable for telomere and chromosome arm separation. Likewise, condensin activity is nonessential in meiosis II for telomere and chromosome arm separation. Thus, in meiosis, the requirements for Aurora-B are distinct at centromeres and telomeres, illustrating the critical differences in the control of chromosome segregation between mitosis and meiosis II.


2015 ◽  
Vol 458 (2) ◽  
pp. 280-286 ◽  
Author(s):  
Hyoeun Kang ◽  
Yong Seok Park ◽  
Dong-Hyung Cho ◽  
Jae-Sung Kim ◽  
Jeong Su Oh

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Candice L Wike ◽  
Hillary K Graves ◽  
Reva Hawkins ◽  
Matthew D Gibson ◽  
Michelle B Ferdinand ◽  
...  

Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation.


2007 ◽  
Vol 27 (24) ◽  
pp. 8533-8546 ◽  
Author(s):  
Tae-Hong Kang ◽  
Do-Young Park ◽  
Yoon Ha Choi ◽  
Kyung-Jin Kim ◽  
Ho Sup Yoon ◽  
...  

ABSTRACT Mitotic chromatin condensation is essential for cell division in eukaryotes. Posttranslational modification of the N-terminal tail of histone proteins, particularly by phosphorylation by mitotic histone kinases, may facilitate this process. In mammals, aurora B is believed to be the mitotic histone H3 Ser10 kinase; however, it is not sufficient to phosphorylate H3 Ser10 with aurora B alone. We show that histone H3 is phosphorylated by vaccinia-related kinase 1 (VRK1). Direct phosphorylation of Thr3 and Ser10 in H3 by VRK1 both in vitro and in vivo was observed. Loss of VRK1 activity was associated with a marked decrease in H3 phosphorylation during mitosis. Phosphorylation of Ser10 by VRK1 is similar to that by aurora B. Moreover, expression and chromatin localization of VRK1 depended on the cell cycle phase. Overexpression of VRK1 resulted in a dramatic condensation of nuclei. Our findings collectively support a role of VRK1 as a novel mitotic histone H3 kinase in mammals.


Sign in / Sign up

Export Citation Format

Share Document