scholarly journals Proteolytic maturation of α2δ represents a checkpoint for activation and neuronal trafficking of latent calcium channels

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Ivan Kadurin ◽  
Laurent Ferron ◽  
Simon W Rothwell ◽  
James O Meyer ◽  
Leon R Douglas ◽  
...  

The auxiliary α2δ subunits of voltage-gated calcium channels are extracellular membrane-associated proteins, which are post-translationally cleaved into disulfide-linked polypeptides α2 and δ. We now show, using α2δ constructs containing artificial cleavage sites, that this processing is an essential step permitting voltage-dependent activation of plasma membrane N-type (CaV2.2) calcium channels. Indeed, uncleaved α2δ inhibits native calcium currents in mammalian neurons. By inducing acute cell-surface proteolytic cleavage of α2δ, voltage-dependent activation of channels is promoted, independent from the trafficking role of α2δ. Uncleaved α2δ does not support trafficking of CaV2.2 channel complexes into neuronal processes, and inhibits Ca2+ entry into synaptic boutons, and we can reverse this by controlled intracellular proteolytic cleavage. We propose a model whereby uncleaved α2δ subunits maintain immature calcium channels in an inhibited state. Proteolytic processing of α2δ then permits voltage-dependent activation of the channels, acting as a checkpoint allowing trafficking only of mature calcium channel complexes into neuronal processes.

2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


1996 ◽  
Vol 22 (4) ◽  
pp. 569-576 ◽  
Author(s):  
A. Spät ◽  
T. Rohács ◽  
A. Horváth ◽  
G Y. Szabadkai ◽  
P. Enyedi

2012 ◽  
Vol 107 (6) ◽  
pp. 1571-1575 ◽  
Author(s):  
Andrew J. Delaney ◽  
John M. Power ◽  
Pankaj Sah

Ifenprodil is a selective blocker of NMDA receptors that are heterodimers composed of GluN1/GluN2B subunits. This pharmacological profile has been extensively used to test the role of GluN2B-containing NMDA receptors in learning and memory formation. However, ifenprodil has also been reported to have actions at a number of other receptors, including high voltage-activated calcium channels. Here we show that, in the basolateral amygdala, ifenprodil dose dependently blocks excitatory transmission to principal neurons by a presynaptic mechanism. This action of ifenprodil has an IC50 of ∼10 μM and is fully occluded by the P/Q type calcium channel blocker ω-agatoxin. We conclude that ifenprodil reduces synaptic transmission in the basolateral amygdala by partially blocking P-type voltage-dependent calcium channels.


2000 ◽  
Vol 278 (6) ◽  
pp. R1524-R1534 ◽  
Author(s):  
Catherine S. Kim ◽  
Mary D. Coyne ◽  
Judith K. Gwathmey

Voltage-dependent calcium channels (VDCC) in ventricular myocytes from rainbow trout ( Oncorhynchus mykiss) were investigated in vitro using the perforated patch-clamp technique, which maintains the integrity of the intracellular milieu. First, we characterized the current using barium as the charge carrier and established the doses of various pharmacological agents to use these agents in additional studies. Second, we examined the current at several physiological temperatures to determine temperature dependency. The calcium currents at 10°C (acclimation temperature) were identified as l-type calcium currents based on their kinetic behavior and response to various calcium channel agonists and antagonists. Myocytes were chilled (4°C) and warmed (18 and 22°C), and the response of VDCC to varying temperatures was observed. There was no significant dependency of the current amplitude and kinetics on temperature. Amplitude decreased 25–36% at 4°C (Q10 ∼1.89) and increased 18% at 18°C (Q10 ∼1.23) in control, Bay K8644 (Bay K)-, and forskolin-enhanced currents. The inactivation rates (τi) did not demonstrate a temperature sensitivity for the VDCC (Q10 1.23–1.92); Bay K treatment, however, increased temperature sensitivity of τi between 10 and 18°C (Q10 3.98). The low Q10 values for VDCC are consistent with a minimal temperature sensitivity of trout myocytes between 4 and 22°C. This low-temperature dependency may provide an important role for sarcolemmal calcium channels in adaptation to varying environmental temperatures in trout.


2000 ◽  
Vol 275 (12) ◽  
pp. 8556-8563 ◽  
Author(s):  
Brian L. Gerhardstein ◽  
Tianyan Gao ◽  
Moritz Bünemann ◽  
Tipu S. Puri ◽  
Adam Adair ◽  
...  

1993 ◽  
Vol 102 (2) ◽  
pp. 277-294 ◽  
Author(s):  
C Pfeiffer-Linn ◽  
E M Lasater

White bass (Roccus chrysops) retinal horizontal cells possess two types of voltage-activated calcium currents which have recently been characterized with regard to their voltage dependence and pharmacology (Sullivan, J., and E. M. Lasater. 1992. Journal of General Physiology. 99:85-107). A low voltage-activated transient current was identified which resembles the T-type calcium current described in a number of other preparations, along with a sustained high threshold, long-lasting calcium current that resembles the L-type calcium current. Here we report on the modulation of horizontal cell calcium channels by dopamine. Under whole-cell voltage clamp conditions favoring the expression of both calcium currents, dopamine had opposing actions on the two types of voltage-sensitive calcium currents in the same cone-type horizontal cell. The L-type calcium current was significantly potentiated by dopamine while the T-type current was simultaneously reduced. Dopamine had no effect on calcium currents in rod-type horizontal cells. Both of dopamine's actions were mimicked with the D1 receptor agonist, SKF 38393, and blocked by application of the D1 specific antagonist, SCH 23390. Dopamine's actions on the two types of calcium currents in white bass horizontal cells are mimicked by the cell membrane-permeant cyclic AMP derivative, 8-(4-chlorophenylthio)-cyclic AMP, suggesting that dopamine's action is linked to a cAMP-mediated second messenger system. Furthermore, the inhibitor of cAMP-dependent protein kinase blocked both of dopamine's actions on the voltage-dependent calcium channels when introduced through the patch pipette. This indicates that protein phosphorylation is involved in modulating horizontal cell calcium channels by dopamine. Taken together, these results show that dopamine has differential effects on the voltage-dependent calcium currents in retinal horizontal cells. The modulation of these currents may play a role in shaping the response properties of horizontal cells.


Sign in / Sign up

Export Citation Format

Share Document