scholarly journals Dopamine modulates in a differential fashion T- and L-type calcium currents in bass retinal horizontal cells.

1993 ◽  
Vol 102 (2) ◽  
pp. 277-294 ◽  
Author(s):  
C Pfeiffer-Linn ◽  
E M Lasater

White bass (Roccus chrysops) retinal horizontal cells possess two types of voltage-activated calcium currents which have recently been characterized with regard to their voltage dependence and pharmacology (Sullivan, J., and E. M. Lasater. 1992. Journal of General Physiology. 99:85-107). A low voltage-activated transient current was identified which resembles the T-type calcium current described in a number of other preparations, along with a sustained high threshold, long-lasting calcium current that resembles the L-type calcium current. Here we report on the modulation of horizontal cell calcium channels by dopamine. Under whole-cell voltage clamp conditions favoring the expression of both calcium currents, dopamine had opposing actions on the two types of voltage-sensitive calcium currents in the same cone-type horizontal cell. The L-type calcium current was significantly potentiated by dopamine while the T-type current was simultaneously reduced. Dopamine had no effect on calcium currents in rod-type horizontal cells. Both of dopamine's actions were mimicked with the D1 receptor agonist, SKF 38393, and blocked by application of the D1 specific antagonist, SCH 23390. Dopamine's actions on the two types of calcium currents in white bass horizontal cells are mimicked by the cell membrane-permeant cyclic AMP derivative, 8-(4-chlorophenylthio)-cyclic AMP, suggesting that dopamine's action is linked to a cAMP-mediated second messenger system. Furthermore, the inhibitor of cAMP-dependent protein kinase blocked both of dopamine's actions on the voltage-dependent calcium channels when introduced through the patch pipette. This indicates that protein phosphorylation is involved in modulating horizontal cell calcium channels by dopamine. Taken together, these results show that dopamine has differential effects on the voltage-dependent calcium currents in retinal horizontal cells. The modulation of these currents may play a role in shaping the response properties of horizontal cells.

1996 ◽  
Vol 75 (2) ◽  
pp. 609-619 ◽  
Author(s):  
C. L. Pfeiffer-Linn ◽  
E. M. Lasater

1. A voltage-activated, sustained calcium current in white bass retinal cone horizontal cells was characterized on the basis of electrophysiological and pharmacological criteria. Studies were performed with the use of a combination of whole cell and single-channel analysis of outside-out excised patches from isolated, cultured retinal horizontal cells. 2. We found that the white bass sustained calcium channel represents a unique type of calcium channel. On the basis of our analysis, it does not fall into any current classification scheme. The horizontal cell channel shares some biophysical and pharmacological properties with the typical high-voltage-activated L-type channel, but it also has features in common with the P-type channel. 3. The biophysical characteristics of the channel were most typical of an L-type channel. It activated above -30 mV membrane potential and only very slowly inactivated. It had a single-channel conductance of 25 pS. 4. Like the typical L-type current, the horizontal cell current was sensitive to the dihydropyridine agonist Bay K 8644. It prolonged the channel open time, which resulted in a large increase in macroscopic current flow into the cell. However, unlike the typical L current, dihydropyridine antagonists (nifedipine, nimodipine, etc.) as well as the specific L-channel inhibitor diltiazem were only moderately effective at best. 5. In a previous study, we found the current was antagonized by a factor found in funnel-web spider toxin. Here we show that the current is completely blocked by low doses of omega-agatoxin IVA. These are characteristics of the P-type calcium channel. But unlike the P current, the horizontal cell current is relatively insensitive to low or high doses of omega-conotoxin MVIIC. 6. The overall combination of calcium channel characteristics sets apart the calcium channel in bass horizontal cells from previously described channels. It appears to be a unique, tissue-specific ion channel, which we have labeled the PL channel.


1995 ◽  
Vol 74 (3) ◽  
pp. 1137-1148 ◽  
Author(s):  
D. L. Cardozo ◽  
B. P. Bean

1. Voltage-dependent calcium channels were studied with whole cell voltage-clamp recordings from neurons enzymatically dispersed from the ventral mesencephalon of rat brains (postnatal days 3-10) and identified as dopamine neurons by 5,7-dihydroxytryptamine autofluorescence. 2. Dopamine neurons had large high-threshold calcium currents activated by depolarizations positive to -50 mV. Different components of calcium channel current were not readily distinguishable by voltage dependence or kinetics, but pharmacological experiments showed the existence of different channel types. The overall current had significant components blocked by nimodipine (28%), by omega-conotoxin GVIA (22%), and by omega-agatoxin-IVA (omega-Aga-IVA) (37%), and there was a significant amount of current (16%) remaining in saturating concentrations of all three blockers. 3. High-threshold calcium current was reversibly reduced by the gamma-aminobutyric acid-B (GABAB) receptor agonist baclofen and by dopamine and the D2 receptor agonist quinpirole. Inhibition by GABAB or dopamine agonists developed and reversed within seconds. 4. Quinpirole reduced both omega-conotoxin-sensitive and omega-Aga-IVA-sensitive components of calcium current. 5. With physiological ionic conditions, inward calcium currents were outweighed by outward currents, in part through calcium-activated potassium channels activated by omega-conotoxin-sensitive and omega-Aga-IVA-sensitive calcium entry.


1992 ◽  
Vol 99 (1) ◽  
pp. 85-107 ◽  
Author(s):  
J M Sullivan ◽  
E M Lasater

Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch-clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15-60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent.


2005 ◽  
Vol 94 (3) ◽  
pp. 2063-2072 ◽  
Author(s):  
Chie-Fang Hsiao ◽  
Nanping Wu ◽  
Scott H. Chandler

Trigeminal motoneurons relay the final output signals generated within the oral-motor pattern generating circuit(s) to muscles for execution of various motor patterns. In recent years, these motoneurons were shown to possess voltage dependent nonlinear membrane properties that allow them to actively participate in sculpting their final output. A complete understanding of the factors controlling trigeminal motoneuronal (TMN) discharge during oral-motor activity requires, at a minimum, a detailed understanding of the palette of ion channels responsible for membrane excitability and a determination of whether these ion channels are targets for modulation. Toward that end, we studied in detail the properties of calcium channels in TMNs and their susceptibility to modulation by 5-HT in rat brain slices. We found that based on pharmacological and voltage-dependent properties, high-voltage-activated (HVA) N-type [ω-conotoxin GVIA (ω-CgTX)]-sensitive, and to a lesser extent P/Q-type [ω-agatoxin IVA (ω-Aga IVA)]-sensitive, calcium channels make up the majority of the whole cell calcium current. 5-HT (5.0 μM) decreased HVA current by 31.3 ± 2.2%, and the majority of this suppression resulted from reduction of current flow through N- and P/Q-type calcium channels. In contrast, 5-HT had no effect on low-voltage-activated (LVA) current amplitude in TMNs. HVA calcium current inhibition was mimicked by 5-CT, a 5-HT1 receptor agonist, and by R(+)-8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT), a specific 5-HT1A agonist. The effects of 5-HT were blocked by the 5-HT1A antagonist 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine hydrobromide (NAN-190) but not by ketanserin, a 5-HT2/1C antagonist. Under current clamp, ω-CgTX and 5-HT were most effective in suppressing the mAHP and both increased the spike frequency and input/output gain in response to current injection. Calcium current modulation by 5-HT1A receptors likely is an important mechanism to fine tune the input/output gain of TMNs in response to small incoming synaptic inputs and accounts for some of the previously reported effects of 5-HT on TMN excitability during tonic and burst activity during oral-motor behavior.


1994 ◽  
Vol 266 (3) ◽  
pp. C709-C719 ◽  
Author(s):  
S. M. Simasko

The role of Na+ in the expression of membrane potential activity in the clonal rat pituitary cell line GH3 was investigated using the perforated patch variation of patch-clamp electrophysiological techniques. It was found that replacing bath Na+ with choline, tris(hydroxymethyl)aminomethane (Tris), or N-methyl-D-glucamine (NMG) caused the cells to hyperpolarize 20-30 mV. Tetrodotoxin had no effect. The effects of the Na+ substitutes could not be explained by effects on potassium or calcium currents. Although all three Na+ substitutes suppressed voltage-dependent calcium current by 10-20%, block of voltage-dependent calcium current by nifedipine or Co2+ did not result in hyperpolarization of the cells. There was no effect of the Na+ substitutes on voltage-dependent potassium currents. In contrast, all three Na+ substitutes influenced calcium-activated potassium currents [IK(Ca)], but only at depolarized potentials. Choline consistently suppressed IK(Ca), whereas Tris and NMG either had no effect or slightly increased IK(Ca). These effects on IK(Ca) also cannot explain the hyperpolarization induced by removing bath Na+. Choline always hyperpolarized cells yet suppressed IK(Ca). Furthermore, removing bath Na+ caused an increase in cell input resistance, an observation consistent with the loss of a membrane conductance as the basis of the hyperpolarization. Direct measurement of background currents revealed a 12-pA inward current at -84 mV that was lost upon removing bath Na+. These results suggest that this background sodium conductance provides the depolarizing drive for GH3 cells to reach the threshold for firing calcium-dependent action potentials.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Ivan Kadurin ◽  
Laurent Ferron ◽  
Simon W Rothwell ◽  
James O Meyer ◽  
Leon R Douglas ◽  
...  

The auxiliary α2δ subunits of voltage-gated calcium channels are extracellular membrane-associated proteins, which are post-translationally cleaved into disulfide-linked polypeptides α2 and δ. We now show, using α2δ constructs containing artificial cleavage sites, that this processing is an essential step permitting voltage-dependent activation of plasma membrane N-type (CaV2.2) calcium channels. Indeed, uncleaved α2δ inhibits native calcium currents in mammalian neurons. By inducing acute cell-surface proteolytic cleavage of α2δ, voltage-dependent activation of channels is promoted, independent from the trafficking role of α2δ. Uncleaved α2δ does not support trafficking of CaV2.2 channel complexes into neuronal processes, and inhibits Ca2+ entry into synaptic boutons, and we can reverse this by controlled intracellular proteolytic cleavage. We propose a model whereby uncleaved α2δ subunits maintain immature calcium channels in an inhibited state. Proteolytic processing of α2δ then permits voltage-dependent activation of the channels, acting as a checkpoint allowing trafficking only of mature calcium channel complexes into neuronal processes.


2020 ◽  
Author(s):  
Abdesslam Chrachri

AbstractWhole-cell patch-clamp recordings from identified centrifugal neurons of the optic lobe in a slice preparation allowed the characterization of five voltage-dependent currents; two outward and three inward currents. The outward currents were; the 4-aminopyridine-sensitive transient potassium or A-current (IA), the TEA-sensitive sustained current or delayed rectifier (IK). The inward currents were; the tetrodotoxin-sensitive transient current or sodium current (INa). The second is the cobalt- and cadmium-sensitive sustained current which is enhanced by barium and blocked by the dihydropyridine antagonist, nifedipine suggesting that it could be the L-type calcium current (ICaL). Finally, another transient inward current, also carried by calcium, but unlike the L-type, this current is activated at more negative potentials and resembles the low-voltage-activated or T-type calcium current (ICaT) of other preparations.Application of the neuropeptide FMRFamide caused a significant attenuation to the peak amplitude of both sodium and sustained calcium currents without any apparent effect on the transient calcium current. Furthermore, FMRFamide also caused a reduction of both outward currents in these centrifugal neurons. The fact that FMRFamide reduced the magnitude of four of five characterized currents could suggest that this neuropeptide may act as a strong inhibitory agent on these neurons.SummaryFMRFamide modulate the ionic currents in identified centrifugal neurons in the optic lobe of cuttlefish: thus, FMRFamide could play a key role in visual processing of these animals.


1990 ◽  
Vol 64 (1) ◽  
pp. 248-261 ◽  
Author(s):  
R. L. Winslow ◽  
S. Ma

1. We have previously presented a model of horizontal-cell soma isolated from fish retina. The model consists of a synaptic conductance representing input from photoreceptors in parallel with voltage-dependent membrane currents. Membrane-current models are based on I-V curves measured in isolated fish horizontal cells. Bifurcation theory was used to analyze model properties. The major findings of this study were 1) the inward Ca2+ current must be inactivated to account for horizontal-cell resting potentials and hyperpolarizing responses to light stimuli in a background of dark, and 2) the synaptic conductance controls the bifurcation structure of the model, with bistable behavior occurring at small and monostable behavior occurring at larger values of the synaptic conductance. The synaptic conductance at the point of transition from bistable to monostable behavior corresponds to the activation of as few as 100 synaptic channels. Thus tonic synaptic input from photoreceptors and inactivation of the inward Ca2+ current act to “linearize” responses of isolated horizontal-cell models. 2. The model described in this paper extends these analyses to large networks of horizontal cells in which each cell is coupled resistively to its nearest neighbors and is modeled with the use of the full complement of nonlinear membrane currents. Network responses to arbitrary patterns of conductance change (simulating inputs from photoreceptors), current-, or voltage-clamp stimuli are computed using the Newton iteration. The Newton descent direction is computed using either conjugate gradient (CG) or preconditioned CG algorithms. 3. An analysis of network stability properties is performed. Network I-V curves are computed by voltage-clamping the center node and computing the current required to maintain the clamp voltage. Computations are performed on networks of model cells in which the Ca2+ current is fully activated and the synaptic conductance is zero, thus making each cell as nonlinear as possible. Coupling conductance values slightly greater than 100 pS provide a current shunt sufficient to prevent the generation of Ca2+ action potentials in the network. This coupling conductance corresponds to the conductance of as few as two gap-junction channels and is more than two orders of magnitude less than the coupling known to exist between pairs of cultured horizontal cells.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 278 (6) ◽  
pp. R1524-R1534 ◽  
Author(s):  
Catherine S. Kim ◽  
Mary D. Coyne ◽  
Judith K. Gwathmey

Voltage-dependent calcium channels (VDCC) in ventricular myocytes from rainbow trout ( Oncorhynchus mykiss) were investigated in vitro using the perforated patch-clamp technique, which maintains the integrity of the intracellular milieu. First, we characterized the current using barium as the charge carrier and established the doses of various pharmacological agents to use these agents in additional studies. Second, we examined the current at several physiological temperatures to determine temperature dependency. The calcium currents at 10°C (acclimation temperature) were identified as l-type calcium currents based on their kinetic behavior and response to various calcium channel agonists and antagonists. Myocytes were chilled (4°C) and warmed (18 and 22°C), and the response of VDCC to varying temperatures was observed. There was no significant dependency of the current amplitude and kinetics on temperature. Amplitude decreased 25–36% at 4°C (Q10 ∼1.89) and increased 18% at 18°C (Q10 ∼1.23) in control, Bay K8644 (Bay K)-, and forskolin-enhanced currents. The inactivation rates (τi) did not demonstrate a temperature sensitivity for the VDCC (Q10 1.23–1.92); Bay K treatment, however, increased temperature sensitivity of τi between 10 and 18°C (Q10 3.98). The low Q10 values for VDCC are consistent with a minimal temperature sensitivity of trout myocytes between 4 and 22°C. This low-temperature dependency may provide an important role for sarcolemmal calcium channels in adaptation to varying environmental temperatures in trout.


1998 ◽  
Vol 79 (1) ◽  
pp. 190-196 ◽  
Author(s):  
Lubor Gaal ◽  
Botond Roska ◽  
Serge A. Picaud ◽  
Samuel M. Wu ◽  
Robert Marc ◽  
...  

Gaal, Lubor, Botond Roska, Serge A. Picaud, Samuel M. Wu, Robert Marc, and Frank S. Werblin. Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. J. Neurophysiol. 79: 190–196, 1998. We evaluated the role of the sodium/glutamate transporter at the synaptic terminals of cone photoreceptors in controlling postsynaptic response kinetics. The strategy was to measure the changes in horizontal cell response rate induced by blocking transporter uptake in cones with dihydrokainate (DHK). DHK was chosen as the uptake blocker because, as we show through autoradiographic uptake measurements, DHK specifically blocked uptake in cones without affecting uptake in Mueller cells. Horizontal cells depolarized from about −70 to −20 mV as the exogenous glutamate concentration was increased from ∼1 to 40 μM, so horizontal cells can serve as “glutamate electrodes” during the light response. DHK slowed the rate of hyperpolarization of the horizontal cells in a dose-dependent way, but didn't affect the kinetics of the cone responses. At 300 μM DHK, the rate of the horizontal cell hyperpolarization was slowed to only 17 ± 8.5% (mean ± SD) of control. Translating this to changes in glutamate concentration using the slice dose response curve as calibration in Fig. 2 , DHK reduced the rate of removal of glutamate from ∼0.12 to 0.031 μM/s. The voltage dependence of uptake rate in the transporter alone was capable of modulating glutamate concentration: we blocked vesicular released glutamate with bathed 20 mM Mg2+ and then added 30 μM glutamate to the bath to reestablish a physiological glutamate concentration level at the synapse and thereby depolarize the horizontal cells. Under these conditions, a light flash elicited a 17-mV hyperpolarization in the horizontal cells. When we substituted kainate, which is not transported, for glutamate, horizontal cells were depolarized but light did not elicit any response, indicating that the transporter alone was responsible for the removal of glutamate under these conditions. This suggests that the transporter was both voltage dependent and robust enough to modulate glutamate concentration. The transporter must be at least as effective as diffusion in removing glutamate from the synapse because there is only a very small light response once the transporter is blocked. The transporter, via its voltage dependence on cone membrane potential, appears to contribute significantly to the control of postsynaptic response kinetics.[Figure: see text]


Sign in / Sign up

Export Citation Format

Share Document