scholarly journals Author response: Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells

2017 ◽  
Author(s):  
Deeqa Mahamed ◽  
Mikael Boulle ◽  
Yashica Ganga ◽  
Chanelle Mc Arthur ◽  
Steven Skroch ◽  
...  
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Deeqa Mahamed ◽  
Mikael Boulle ◽  
Yashica Ganga ◽  
Chanelle Mc Arthur ◽  
Steven Skroch ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Deeqa Mahamed ◽  
Mikael Boulle ◽  
Yashica Ganga ◽  
Chanelle Mc Arthur ◽  
Steven Skroch ◽  
...  

A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Eun Jung Thak ◽  
Su-Bin Lee ◽  
Shengjie Xu-Vanpala ◽  
Dong-Jik Lee ◽  
Seung-Yeon Chung ◽  
...  

ABSTRACT Cryptococcus neoformans is a human-pathogenic fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised individuals. To investigate the roles of N-glycan core structure in cryptococcal pathogenicity, we constructed mutant strains of C. neoformans with defects in the assembly of lipid-linked N-glycans in the luminal side of the endoplasmic reticulum (ER). Deletion of ALG3 (alg3Δ), which encodes dolichyl-phosphate-mannose (Dol-P-Man)-dependent α-1,3-mannosyltransferase, resulted in the production of truncated neutral N-glycans carrying five mannose residues as a major species. Despite moderate or nondetectable defects in virulence-associated phenotypes in vitro, the alg3Δ mutant was avirulent in a mouse model of systemic cryptococcosis. Notably, the mutant did not show defects in early stages of host cell interaction during infection, including attachment to lung epithelial cells, opsonic/nonopsonic phagocytosis, and manipulation of phagosome acidification. However, the ability to drive macrophage cell death was greatly decreased in this mutant, without loss of cell wall remodeling capacity. Furthermore, deletion of ALG9 and ALG12, encoding Dol-P-Man-dependent α-1,2-mannosyltransferases and α-1,6-mannosyltransferases, generating truncated core N-glycans with six and seven mannose residues, respectively, also displayed remarkably reduced macrophage cell death and in vivo virulence. However, secretion levels of interleukin-1β (IL-1β) were not reduced in the bone marrow-derived dendritic cells obtained from Asc- and Gsdmd-deficient mice infected with the alg3Δ mutant strain, excluding the possibility that pyroptosis is a main host cell death pathway dependent on intact core N-glycans. Our results demonstrated N-glycan structures as a critical feature in modulating death of host cells, which is exploited by as a strategy for host cell escape for dissemination of C. neoformans. IMPORTANCE We previously reported that the outer mannose chains of N-glycans are dispensable for the virulence of C. neoformans, which is in stark contrast to findings for the other human-pathogenic yeast, Candida albicans. Here, we present evidence that an intact core N-glycan structure is required for C. neoformans pathogenicity by systematically analyzing alg3Δ, alg9Δ, and alg12Δ strains that have defects in lipid-linked N-glycan assembly and in in vivo virulence. The alg null mutants producing truncated core N-glycans were defective in inducing host cell death after phagocytosis, which is triggered as a mechanism of pulmonary escape and dissemination of C. neoformans, thus becoming inactive in causing fatal infection. The results clearly demonstrated the critical features of the N-glycan structure in mediating the interaction with host cells during fungal infection. The delineation of the roles of protein glycosylation in fungal pathogenesis not only provides insight into the glycan-based fungal infection mechanism but also will aid in the development of novel antifungal agents.


2015 ◽  
Vol 175 (1) ◽  
pp. 50-57 ◽  
Author(s):  
Pan Wei ◽  
Guimei Cui ◽  
Qiang Lu ◽  
Li Yang ◽  
Zhenhong Guan ◽  
...  

2007 ◽  
Vol 75 (4) ◽  
pp. 1984-1993 ◽  
Author(s):  
Mary P. O'Sullivan ◽  
Seonadh O'Leary ◽  
Deirdre M. Kelly ◽  
Joseph Keane

ABSTRACT Macrophages can undergo apoptosis after infection with Mycobacterium tuberculosis. This macrophage response deprives the bacillus of its niche cell and supports the host response through better antigen presentation. The intracellular pathways of apoptosis that elaborate this macrophage response are not well understood. To address this issue, we investigated the contribution of various apoptosis pathways to M. tuberculosis-induced macrophage cell death. We found that macrophages die in a caspase-independent manner after infection with M. tuberculosis (at multiplicities of infection ranging from 1 to 20). There was evidence for the involvement of both the mitochondria (cleavage of Bid) and the lysosomes (cathepsin-mediated DNA fragmentation) in this cell death pathway. Dying macrophages displayed several features typical of apoptosis, including DNA fragmentation, nuclear condensation, and exposure of phosphatidylserine on the plasma membrane. However, nuclear fragmentation was not observed, which suggests that M. tuberculosis-induced cell death differs in some respects from classical apoptosis. This novel mechanism of cell death was blocked by serine protease inhibitors. A better understanding of this protective macrophage response may direct new vaccine and treatment options.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hylton E. Rodel ◽  
Isabella A. T. M. Ferreira ◽  
Carly G. K. Ziegler ◽  
Yashica Ganga ◽  
Mallory Bernstein ◽  
...  

Mycobacterium tuberculosis (Mtb) bacilli readily aggregate. We previously reported that Mtb aggregates lead to phagocyte death and subsequent efficient replication in the dead infected cells. Here, we examined the transcriptional response of human monocyte derived macrophages to phagocytosis of aggregated Mtb relative to phagocytosis of non-aggregated single or multiple bacilli. Infection with aggregated Mtb led to an early upregulation of pro-inflammatory associated genes and enhanced TNFα signaling via the NFκB pathway. These pathways were significantly more upregulated relative to infection with single or multiple non-aggregated bacilli per cell. Phagocytosis of aggregates led to a decreased phagosome acidification on a per bacillus basis and increased phagocyte cell death, which was not observed when Mtb aggregates were heat killed prior to phagocytosis. Mtb aggregates, observed in a granuloma from a patient, were found surrounding a lesion cavity. These observations suggest that TB aggregation may be a mechanism for pathogenesis. They raise the possibility that aggregated Mtb, if spread from individual to individual, could facilitate increased inflammation, Mtb growth, and macrophage cell death, potentially leading to active disease, cell necrosis, and additional cycles of transmission.


2010 ◽  
Vol 17 (4) ◽  
pp. 513-517 ◽  
Author(s):  
Daniel Eklund ◽  
Amanda Welin ◽  
Thomas Schön ◽  
Olle Stendahl ◽  
Kris Huygen ◽  
...  

ABSTRACT Intracellular pathogens such as Mycobacterium tuberculosis have adapted to a life inside host cells, in which they utilize host nutrients to replicate and spread. Ineffective methods for the evaluation of growth of intracellular pathogens in their true environment pose an obstacle for basic research and drug screening. Here we present the validation of a luminometry-based method for the analysis of intramacrophage growth of M. tuberculosis. The method, which is performed in a medium-throughput format, can easily be adapted for studies of other intracellular pathogens and cell types. The use of host cells in drug-screening assays dedicated to find antimicrobials effective against intracellular pathogens permits the discovery of not only novel antibiotics but also compounds with immunomodulatory and virulence-impairing activities, which may be future alternatives or complements to antibiotics.


2007 ◽  
Vol 75 (6) ◽  
pp. 2894-2902 ◽  
Author(s):  
Ryosuke Uchiyama ◽  
Ikuo Kawamura ◽  
Takao Fujimura ◽  
Michiko Kawanishi ◽  
Kohsuke Tsuchiya ◽  
...  

ABSTRACT In order to know how caspases contribute to the intracellular fate of Mycobacterium tuberculosis and host cell death in the infected macrophages, we examined the effect of benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethane (z-VAD-fmk), a broad-spectrum caspase inhibitor, on the growth of M. tuberculosis H37Rv in RAW 264 cells. In the cells treated with z-VAD-fmk, activation of caspase-8, caspase-3/7, and caspase-9 was clearly suppressed, and DNA fragmentation of the infected cells was also reduced. Under this experimental condition, it was found that the treatment markedly inhibited bacterial growth inside macrophages. The infected cells appeared to undergo cell death of the necrosis type in the presence of z-VAD-fmk. We further found that z-VAD-fmk treatment resulted in the generation of intracellular reactive oxygen species (ROS) in the infected cells. By addition of a scavenger of ROS, the host cell necrosis was inhibited and the intracellular growth of H37Rv was significantly restored. Among inhibitors specific for each caspase, only the caspase-9-specific inhibitor enhanced the generation of ROS and induced necrosis of the infected cells. Furthermore, we found that severe necrosis was induced by infection with H37Rv but not H37Ra in the presence of z-VAD-fmk. Caspase-9 activation was also detected in H37Rv-infected cells, but H37Ra never induced such caspase-9 activation. These results indicated that caspase-9, which was activated by infection with virulent M. tuberculosis, contributed to the inhibition of necrosis of the infected host cells, presumably through suppression of intracellular ROS generation.


Sign in / Sign up

Export Citation Format

Share Document