scholarly journals Author response: Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development

2017 ◽  
Author(s):  
Max van Lessen ◽  
Shannon Shibata-Germanos ◽  
Andreas van Impel ◽  
Thomas A Hawkins ◽  
Jason Rihel ◽  
...  
2000 ◽  
Vol 37 (1) ◽  
pp. 85-95 ◽  
Author(s):  
E Sinzelle ◽  
J P Duong Van Huyen ◽  
S Breiteneder-Geleff ◽  
E Braunberger ◽  
A Deloche ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1371
Author(s):  
Eliane Sibler ◽  
Yuliang He ◽  
Luca Ducoli ◽  
Nadja Keller ◽  
Noriki Fujimoto ◽  
...  

The lymphatic system plays a crucial role in immunity and lymph nodes (LNs) undergo drastic remodeling during inflammation. Here, we used single-cell RNA sequencing to investigate transcriptional changes in lymphatic endothelial cells (LECs) in LNs draining naïve and inflamed skin. We found that subsets of LECs lining the different LN sinuses responded individually to skin inflammation, suggesting that they exert distinct functions under pathological conditions. Among the genes dysregulated during inflammation, we confirmed an up-regulation of CD200 in the LECs lining the subcapsular sinus floor with a possible function in immune regulation. Furthermore, by in silico analysis, we predicted numerous possible interactions of LECs with diverse immune cells in the LNs and found similarities in the transcriptional changes of LN LECs in different skin inflammation settings. In summary, we provide an in-depth analysis of the transcriptional landscape of LN LECs in the naïve state and in skin inflammation.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


Sign in / Sign up

Export Citation Format

Share Document