lymphatic development
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 29)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Matthew Menendez ◽  
Anna Drozd ◽  
Katarzyna Borawska ◽  
Joanna J Chmielewska ◽  
Meng-Ling Wu ◽  
...  

Background: The chromatin remodeling enzyme Brahma Related Gene 1 (BRG1) regulates gene expression in a variety of rapidly differentiating cells during embryonic development. However, the critical genes that BRG1 regulates during lymphatic vascular development are unknown. Methods: We used genetic and imaging techniques to define the role of BRG1 in murine embryonic lymphatic development, although this approach inadvertently expanded our study to multiple interacting cell types. Results: We found that omental macrophages fine-tune an unexpected developmental process by which erythrocytes escaping from naturally discontinuous omental blood vessels are collected by nearby lymphatic vessels. Our data indicate that circulating fibrin(ogen) leaking from gaps in omental blood vessels can trigger inflammasome-mediated interleukin 1 beta (IL-1β) production and secretion from nearby macrophages. IL-1β destabilizes adherens junctions in omental blood and lymphatic vessels, contributing to both extravasation of erythrocytes and their uptake by lymphatics. BRG1 regulates IL-1β production in omental macrophages by transcriptionally suppressing the inflammasome trigger Receptor Interacting Protein Kinase 3 (RIPK3). Conclusions: Genetic deletion of Brg1 in embryonic macrophages leads to excessive IL-1β production, erythrocyte leakage from blood vessels, and blood-filled lymphatics in the developing omentum. Altogether, these results highlight a novel context for epigenetically-regulated crosstalk between macrophages, blood vessels, and lymphatics.


2021 ◽  
Vol 65 (4) ◽  
pp. 72-78
Author(s):  
J. Teleky ◽  
J. Király

Abstract The homeobox gene, Prox-1 is a transcription factor essential for lymphatic development (lymphangiogenesis) during embryogenesis. It also performs different functions in various tissues such as: retina, lens, liver, pancreas and the central nervous system. Intense expression of Prox-1 has been demonstrated in the developing spinal cord and brain. In adulthood its expression continues in the hippocampus and cerebellum. In adult tissues the process of lymphatic vasculature formation is accompanied under certain pathological conditions such as inflammation, tissue repair and tumour growth. Prox-1 expression is typical for lymphatic vessels; thus it belongs to one of the most specific and widely used mammalian lymphatic endothelial marker in the detection of lymphangiogenesis and lymphatic vessel invasion in oncogenesis. It has been shown that Prox-1 is involved in cancer development and progression. It’s tumour suppressive and oncogenic properties are proven in several human cancers, including brain tumours. Among all body cancers the brain tumours represent the most feared tumours with very limited treatment options and a poor diagnosis. The aim of this paper was to show the current knowledge of the gene Prox-1 with an emphasis on brain tumours, especially in gliomas.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi26-vi26
Author(s):  
Ali Momin ◽  
Xin Chen ◽  
Gousiyi Wang ◽  
Xian Wang ◽  
Hyun-Kee Min ◽  
...  

Abstract Two major obstacles in brain cancer treatment are the blood-tumor barrier (BTB), which restricts delivery of most therapeutic agents, and the quiescent brain tumor-initiating cells (BTICs), which evade cell cycle-targeting chemotherapy. Mechanosensation, the transduction of mechanical cues into cellular signaling, underlies physiological processes such as touch, pain, proprioception, hearing, respiration, epithelial homeostasis, and vascular and lymphatic development. We report that medulloblastoma (MB) BTICs are mechanosensing, a property conferred by force-activated ion channel Piezo2. In contrast to the prevailing view that astrocytes function as a physical barrier in BTB, BTICs project endfeet to ensheathe capillaries. MB develops a tissue stiffness gradient as a function of distance to capillaries. Piezo2 senses substrate stiffness to sustain local intracellular calcium, actomyosin tension, and adhesion at BTIC growth cones, which allow BTICs to mechanically interact with their substrate and sequester β-Catenin to prevent WNT/β-Catenin signaling in BTICs. Our single cell analysis uncovers a two-branched BTIC trajectory that progresses from a deep quiescent state to two cycling states. Tumor cell-specific Piezo2 knockout reverses the off-on WNT/β-Catenin signaling states in BTICs and endothelial cells, collapses the BTB, reduces quiescence depth of BTICs, and markedly enhances MB response to chemotherapy. Our study reveals that BTICs co-opt astrocytic mechanism to contribute to the BTB and provides the first evidence that BTB depends on mechanochemical signaling to mask tumor chemosensitivity. Targeting Piezo2 addresses BTB and BTIC properties that underlie therapy failures in brain cancer.


Angiogenesis ◽  
2021 ◽  
Author(s):  
Ajit Muley ◽  
Minji Kim Uh ◽  
Glicella Salazar-De Simone ◽  
Bhairavi Swaminathan ◽  
Jennifer M. James ◽  
...  

AbstractIn mice, embryonic dermal lymphatic development is well understood and used to study gene functions in lymphangiogenesis. Notch signaling is an evolutionarily conserved pathway that modulates cell fate decisions, which has been shown to both inhibit and promote dermal lymphangiogenesis. Here, we demonstrate distinct roles for Notch4 signaling versus canonical Notch signaling in embryonic dermal lymphangiogenesis. Actively growing embryonic dermal lymphatics expressed NOTCH1, NOTCH4, and DLL4 which correlated with Notch activity. In lymphatic endothelial cells (LECs), DLL4 activation of Notch induced a subset of Notch effectors and lymphatic genes, which were distinctly regulated by Notch1 and Notch4 activation. Treatment of LECs with VEGF-A or VEGF-C upregulated Dll4 transcripts and differentially and temporally regulated the expression of Notch1 and Hes/Hey genes. Mice nullizygous for Notch4 had an increase in the closure of the lymphangiogenic fronts which correlated with reduced vessel caliber in the maturing lymphatic plexus at E14.5 and reduced branching at E16.5. Activation of Notch4 suppressed LEC migration in a wounding assay significantly more than Notch1, suggesting a dominant role for Notch4 in regulating LEC migration. Unlike Notch4 nulls, inhibition of canonical Notch signaling by expressing a dominant negative form of MAML1 (DNMAML) in Prox1+ LECs led to increased lymphatic density consistent with an increase in LEC proliferation, described for the loss of LEC Notch1. Moreover, loss of Notch4 did not affect LEC canonical Notch signaling. Thus, we propose that Notch4 signaling and canonical Notch signaling have distinct functions in the coordination of embryonic dermal lymphangiogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ani Korhonen ◽  
Erika Gucciardo ◽  
Kaisa Lehti ◽  
Sirpa Loukovaara

AbstractProliferative diabetic retinopathy (PDR) is a sight-threatening diabetic complication in urgent need of new therapies. In this study we identify potential molecular mechanisms and target candidates in the pathogenesis of PDR fibrovascular tissue formation. We performed mRNA sequencing of RNA isolated from eleven excised fibrovascular membranes of type 1 diabetic PDR patients and two non-diabetic patients with rhegmatogenous retinal detachment with proliferative vitreoretinopathy. We determined differentially expressed genes between these groups and performed pathway and gene ontology term enrichment analyses to identify potential underlying mechanisms, pathways, and regulators. Multiple pro-angiogenic processes, including VEGFA-dependent and -independent pathways, as well as processes related to lymphatic development, epithelial to mesenchymal transition (EMT), wound healing, inflammation, fibrosis, and extracellular matrix (ECM) composition, were overrepresented in PDR. Overrepresentation of different angiogenic processes may help to explain the transient nature of the benefits that many patients receive from current intravitreal anti-angiogenic therapies, highlighting the importance of combinatorial treatments. Enrichment of genes and pathways related to lymphatic development indicates that targeting lymphatic involvement in PDR progression could have therapeutic relevance. Together with overrepresentation of EMT and fibrosis as well as differential ECM composition, these findings demonstrate the complexity of PDR fibrovascular tissue formation and provide avenues for the development of novel treatments.


2021 ◽  
Author(s):  
Phillip Ang ◽  
Matt Matrongolo ◽  
Max Tischfield

Congenital skull malformations are associated with vascular anomalies that can impair fluid balance in the central nervous system. We previously reported that humans with craniosynostosis and mutations in TWIST1 have dural venous sinus malformations. It is still unknown whether meningeal lymphatic networks, which are patterned alongside the venous sinuses, are also affected. Using a novel skull flat mounting technique, we show that the growth and expansion of meningeal lymphatics are perturbed in Twist1 craniosynostosis models. Changes to the local meningeal environment, including hypoplastic dura and venous malformations, affect the ability of lymphatic networks to sprout and remodel. Dorsal networks along the transverse sinus are hypoplastic with reduced branching. By contrast, basal networks closer to the skull base are more variably affected, showing exuberant growth in some animals suggesting they are compensating for vessel loss in dorsal networks. Injecting molecular tracers into cerebrospinal fluid reveals significantly less drainage to the deep cervical lymph nodes, indicative of impaired lymphatic function. Collectively, our results show that meningeal lymphatic development is hindered in craniosynostosis, suggesting central nervous system waste clearance may be impeded.


2021 ◽  
Author(s):  
Natasza A Kurpios ◽  
Shing Hu ◽  
Aparna Mahadevan ◽  
Isaac F Elysee ◽  
Joseph Choi ◽  
...  

Intestinal lacteals are the essential lymphatic channels for absorption and transport of dietary lipids and drive pathogenesis of debilitating metabolic diseases. Yet, organ-specific mechanisms linking lymphatic dysfunction to disease etiology remain largely unknown. In this study, we uncover a novel intestinal lymphatic program that is linked to the left-right (LR) asymmetric transcription factor Pitx2. We show that deletion of the asymmetric Pitx2 enhancer, ASE, alters normal lacteal development through the lacteal-associated contractile smooth muscle lineage. ASE deletion leads to abnormal muscle morphogenesis induced by oxidative stress, resulting in impaired lacteal extension and defective lymphatic-dependent lipid transport. Surprisingly, activation of lymphatic-independent trafficking directs dietary lipids from the gut directly to the liver, causing diet-induced fatty liver disease. In summary, our studies reveal the molecular mechanism linking gut lymphatic development to the earliest symmetry-breaking Pitx2 and highlight the important relationship between intestinal lymphangiogenesis and gut-liver axis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dionne Adair ◽  
Raja Rabah ◽  
Maria Ladino-Torres ◽  
Thomas G. Saba

Pulmonary lymphangiectasia (PL) is a rare congenital disorder of pulmonary lymphatic development. Although it was traditionally a fatal disorder of infancy, some cases in later childhood have been reported, suggesting a spectrum of severity. We present an unusual case of unilateral, congenital pulmonary lymphangiectasia. Our patient presented with neonatal respiratory distress, a chronic wet cough and recurrent episodes of bronchitis. Chest CT revealed thickening of the interlobular septae of the right lung. A lung biopsy confirmed the diagnosis of lymphangiectasia. His clinical course is characterized by chronic coughing and recurrent bronchitis but normal growth and development. This case illustrates a relatively mild presentation of unilateral PL, which, along with other reports, suggests variability in the presentation and severity of this disorder. In the absence of imaging and histological examination, mild presentations may go undiagnosed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249068
Author(s):  
Elena C. Sigmund ◽  
Lilian Baur ◽  
Philipp Schineis ◽  
Jorge Arasa ◽  
Victor Collado-Diaz ◽  
...  

Atypical chemokine receptor ACKR3 (formerly CXCR7) is a scavenging receptor that has recently been implicated in murine lymphatic development. Specifically, ACKR3-deficiency was shown to result in lymphatic hyperplasia and lymphedema, in addition to cardiac hyperplasia and cardiac valve defects leading to embryonic lethality. The lymphatic phenotype was attributed to a lymphatic endothelial cell (LEC)-intrinsic scavenging function of ACKR3 for the vascular peptide hormone adrenomedullin (AM), which is also important during postnatal lymphangiogenesis. In this study, we investigated the expression of ACKR3 in the lymphatic vasculature of adult mice and its function in postnatal lymphatic development and function. We show that ACKR3 is widely expressed in mature lymphatics and that it exerts chemokine-scavenging activity in cultured murine skin-derived LECs. To investigate the role of LEC-expressed ACKR3 in postnatal lymphangiogenesis and function during adulthood, we generated and validated a lymphatic-specific, inducible ACKR3 knockout mouse. Surprisingly, in contrast to the reported involvement of ACKR3 in lymphatic development, our analyses revealed no contribution of LEC-expressed ACKR3 to postnatal lymphangiogenesis, lymphatic morphology and drainage function.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


Sign in / Sign up

Export Citation Format

Share Document