scholarly journals Decision letter: Plasmacytoid dendritic cells control dengue and Chikungunya virus infections via IRF7-regulated interferon responses

2018 ◽  
eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Brian Webster ◽  
Scott W Werneke ◽  
Biljana Zafirova ◽  
Sébastien This ◽  
Séverin Coléon ◽  
...  

Type I interferon (IFN-I) responses are critical for the control of RNA virus infections, however, many viruses, including Dengue (DENV) and Chikungunya (CHIKV) virus, do not directly activate plasmacytoid dendritic cells (pDCs), robust IFN-I producing cells. Herein, we demonstrated that DENV and CHIKV infected cells are sensed by pDCs, indirectly, resulting in selective IRF7 activation and IFN-I production, in the absence of other inflammatory cytokine responses. To elucidate pDC immunomodulatory functions, we developed a mouse model in which IRF7 signaling is restricted to pDC. Despite undetectable levels of IFN-I protein, pDC-restricted IRF7 signaling controlled both viruses and was sufficient to protect mice from lethal CHIKV infection. Early pDC IRF7-signaling resulted in amplification of downstream antiviral responses, including an accelerated natural killer (NK) cell-mediated type II IFN response. These studies revealed the dominant, yet indirect role of pDC IRF7-signaling in directing both type I and II IFN responses during arbovirus infections.


2014 ◽  
Vol 89 (6) ◽  
pp. 3200-3208 ◽  
Author(s):  
Elena Grabski ◽  
Ilka Wappler ◽  
Stephanie Pfaender ◽  
Eike Steinmann ◽  
Sibylle Haid ◽  
...  

ABSTRACTWorldwide, approximately 160 million people are chronically infected with hepatitis C virus (HCV), seven distinct genotypes of which are discriminated. The hallmarks of HCV are its genetic variability and the divergent courses of hepatitis C progression in patients. We assessed whether intragenotypic HCV variations would differentially trigger host innate immunity. To this end, we stimulated human primary plasmacytoid dendritic cells (pDC) with crude preparations of different cell culture-derived genotype 2a HCV variants. Parental Japanese fulminant hepatitis C virus (JFH1) did not induce interferon alpha (IFN-α), whereas the intragenotypic chimera Jc1 triggered massive IFN-α responses. Purified Jc1 retained full infectivity but no longer induced IFN-α. Coculture of pDC with HCV-infected hepatoma cells retrieved the capacity to induce IFN-α, whereas Jc1-infected cells triggered stronger responses than JFH1-infected cells. Since the infectivity of virus particles did not seem to affect pDC activation, we next tested Jc1 mutants that were arrested at different stages of particle assembly. These experiments revealed that efficient assembly and core protein envelopment were critically needed to trigger IFN-α. Of note, sequences within domain 2 of the core that vitally affect virus assembly also crucially influenced the IFN-α responses of pDC. These data showed that viral determinants shaped host innate IFN-α responses to HCV.IMPORTANCEAlthough pegylated IFN-α plus ribavirin currently is the standard of care for the treatment of chronic hepatitis C virus infection, not much is known about the relevance of early interferon responses in the pathogenesis of hepatitis C virus infection. Here, we addressed whether intragenotypic variations of hepatitis C virus would account for differential induction of type I interferon responses mounted by primary blood-derived plasmacytoid dendritic cells. Surprisingly, a chimeric genotype 2a virus carrying the nonstructural genes of Japanese fulminant hepatitis C virus (JFH1) induced massive type I interferon responses, whereas the original genotype 2a JFH1 strain did not. Our detailed analyses revealed that, not the virus infectivity, but rather, the efficiency of virus assembly and core protein envelopment critically determined the magnitude of interferon responses. To our knowledge, this is the first example of hepatitis C virus-associated genetic variations that determine the magnitude of innate host responses.


Redox Biology ◽  
2017 ◽  
Vol 13 ◽  
pp. 633-645 ◽  
Author(s):  
Zsofia Agod ◽  
Tünde Fekete ◽  
Marietta M. Budai ◽  
Aliz Varga ◽  
Attila Szabo ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Philipp Schuster ◽  
Jan Bernardin Boscheinen ◽  
Karin Tennert ◽  
Barbara Schmidt

In 1999, two independent groups identified plasmacytoid dendritic cells (PDC) as major type I interferon- (IFN-) producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought.


2008 ◽  
Vol 31 (4) ◽  
pp. 13
Author(s):  
Martin Hyrcza ◽  
Mario Ostrowski ◽  
Sandy Der

Plasmacytoid dendritic cells (pDCs) are innate immune cells able to produce large quantities of type I interferons (IFN) when activated. Human immunodeficiency virus (HIV)-infected patients show generalized immune dysfunction characterized in part by chronic interferon response. In this study we investigated the role of dendritic cells inactivating and maintaining this response. Specifically we compared the IFN geneactivity in pDCs in response to several viruses and TLR agonists. We hypothesized that 1) the pattern of IFN gene transcription would differ in pDCs treated with HIV than with other agents, and 2) that pDCs from patients from different stages of disease would respond differently to the stimulations. To test these hypotheses, we obtained pDCs from 15 HIV-infected and uninfected individuals and treated freshly isolated pDCs with either HIV (BAL strain), influenza virus (A/PR/8/34), Sendai virus (Cantell strain), TLR7 agonist(imiquimod), or TLR9 agonist (CpG-ODN) for 6h. Type I IFN gene transcription was monitored by real time qPCRfor IFNA1, A2, A5, A6, A8,A17, B1, and E1, and cytokine levels were assayed by Cytometric Bead Arrays forTNF?, IL6, IL8, IL10, IL1?, and IL12p70. pDC function as determined by these two assays showed no difference between HIV-infected and uninfected patients or between patients with early or chronic infection. Specifically, HIV did notinduce type I IFN gene expression, whereas influenza virus, Sendai virus and imiquimod did. Similarly, HIV failed to induce any cytokine release from pDCs in contrast to influenza virus, Sendai virus and imiquimod, which stimulatedrelease of TNF?, IL6, or IL8. Together these results suggest that the reaction of pDCs to HIV virus is quantitatively different from the response to agents such as virus, Sendai virus, and imiquimod. In addition, pDCs from HIV-infected persons have responses similar to pDCs from uninfected donors, suggesting, that the DC function may not be affected by HIV infection.


Sign in / Sign up

Export Citation Format

Share Document