immune regulation
Recently Published Documents


TOTAL DOCUMENTS

1610
(FIVE YEARS 412)

H-INDEX

90
(FIVE YEARS 12)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jinwu Peng ◽  
Qiuju Liang ◽  
Zhijie Xu ◽  
Yuan Cai ◽  
Bi Peng ◽  
...  

Exosomes, the small extracellular vesicles, are released by multiple cell types, including tumor cells, and represent a novel avenue for intercellular communication via transferring diverse biomolecules. Recently, microRNAs (miRNAs) were demonstrated to be enclosed in exosomes and therefore was protected from degradation. Such exosomal miRNAs can be transmitted to recipient cells where they could regulate multiple cancer-associated biological processes. Accumulative evidence suggests that exosomal miRNAs serve essential roles in modifying the glioma immune microenvironment and potentially affecting the malignant behaviors and therapeutic responses. As exosomal miRNAs are detectable in almost all kinds of biofluids and correlated with clinicopathological characteristics of glioma, they might be served as promising biomarkers for gliomas. We reviewed the novel findings regarding the biological functions of exosomal miRNAs during glioma pathogenesis and immune regulation. Furthermore, we elaborated on their potential clinical applications as biomarkers in glioma diagnosis, prognosis and treatment response prediction. Finally, we summarized the accessible databases that can be employed for exosome-associated miRNAs identification and functional exploration of cancers, including glioma.


2022 ◽  
pp. 205-238
Author(s):  
Barbara U. Metzler-Zebeli ◽  

Colonization of the porcine gut microbiota commences after birth; however, this development is interrupted at weaning, rendering the piglet vulnerable to enteric disease. Dietary supplementation of non-digestible oligosaccharides can contribute to the stabilization of gut homeostasis by promotion of saccharolytic bacteria, inhibition of opportunistic pathogens, bacterial metabolite production and immune regulation. Whilst traditionally fructans and galactooligosaccharides have been added to weaner pig diets, supplementation of sow’s gestation and lactation diets and oral administration of suckling piglets may exert some beneficial effects too to promote gut microbiota and (immune) function development. Oligosaccharides in sow milk act as prebiotics by specifically shaping the gut microbiota of the offspring. This chapter summarizes the current knowledge on effects of prebiotic oligosaccharides on porcine gut function and health. The modes of actions of those substances are discussed as well as aspects that need more investigation for future applications in diets for suckling piglets.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Bo Yang ◽  
Sen Yang ◽  
Wenyue Zheng ◽  
Yuanchao Wang

AbstractWhile conventional chemical fungicides directly eliminate pathogens, plant immunity inducers activate or prime plant immunity. In recent years, considerable progress has been made in understanding the mechanisms of immune regulation in plants. The development and application of plant immunity inducers based on the principles of plant immunity represent a new field in plant protection research. In this review, we describe the mechanisms of plant immunity inducers in terms of plant immune system activation, summarize the various classes of reported plant immunity inducers (proteins, oligosaccharides, chemicals, and lipids), and review methods for the identification or synthesis of plant immunity inducers. The current situation, new strategies, and future prospects in the development and application of plant immunity inducers are also discussed.


Author(s):  
Haowei Zhang ◽  
Yujin Ding ◽  
Qin Zeng ◽  
Dandan Wang ◽  
Ganglei Liu ◽  
...  

Background: Mesenteric adipose tissue (MAT) plays a critical role in the intestinal physiological ecosystems. Small and large intestines have evidently intrinsic and distinct characteristics. However, whether there exist any mesenteric differences adjacent to the small and large intestines (SMAT and LMAT) has not been properly characterized. We studied the important facets of these differences, such as morphology, gene expression, cell components and immune regulation of MATs, to characterize the mesenteric differences. Methods: The SMAT and LMAT of mice were utilized for comparison of tissue morphology. Paired mesenteric samples were analyzed by RNA-seq to clarify gene expression profiles. MAT partial excision models were constructed to illustrate the immune regulation roles of MATs, and 16S-seq was applied to detect the subsequent effect on microbiota. Results: Our data show that different segments of mesenteries have different morphological structures. SMAT not only has smaller adipocytes but also contains more fat-associated lymphoid clusters than LMAT. The gene expression profile is also discrepant between these two MATs in mice. B-cell markers were abundantly expressed in SMAT, while development-related genes were highly expressed in LMAT. Adipose-derived stem cells of LMAT exhibited higher adipogenic potential and lower proliferation rates than those of SMAT. In addition, SMAT and LMAT play different roles in immune regulation and subsequently affect microbiota components. Finally, our data clarified the described differences between SMAT and LMAT in humans. Conclusions: There were significant differences in cell morphology, gene expression profiles, cell components, biological characteristics, and immune and microbiota regulation roles between regional MATs.


2021 ◽  
Vol 10 (1) ◽  
pp. 91
Author(s):  
Patrycja Cichońska ◽  
Małgorzata Ziarno

Fermentation is widely used in the processing of dairy, meat, and plant products. Due to the growing popularity of plant diets and the health benefits of consuming fermented products, there has been growing interest in the fermentation of plant products and the selection of microorganisms suitable for this process. The review provides a brief overview of lactic acid bacteria (LAB) and their use in fermentation of legumes and legume-based beverages. Its scope also extends to prebiotic ingredients present in legumes and legume-based beverages that can support the growth of LAB. Legumes are a suitable matrix for the production of plant-based beverages, which are the most popular products among dairy alternatives. Legumes and legume-based beverages have been successfully fermented with LAB. Legumes are a natural source of ingredients with prebiotic properties, including oligosaccharides, resistant starch, polyphenols, and isoflavones. These compounds provide a broad range of important physiological benefits, including anti-inflammatory and immune regulation, as well as anti-cancer properties and metabolic regulation. The properties of legumes make it possible to use them to create synbiotic food, which is a source of probiotics and prebiotics.


Author(s):  
Kristina Laubhahn ◽  
Andreas Böck ◽  
Kathrin Zeber ◽  
Sandra Unterschemmann ◽  
Sonja Kunze ◽  
...  

2021 ◽  
pp. 2108525
Author(s):  
Yu Liu ◽  
Ping Hu ◽  
Zhiheng Zheng ◽  
Da Zhong ◽  
Weichang Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document