scholarly journals Decision letter: High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo

2018 ◽  
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Guanghan Meng ◽  
Yajie Liang ◽  
Sarah Sarsfield ◽  
Wan-chen Jiang ◽  
Rongwen Lu ◽  
...  

Optical imaging has become a powerful tool for studying brains in vivo. The opacity of adult brains makes microendoscopy, with an optical probe such as a gradient index (GRIN) lens embedded into brain tissue to provide optical relay, the method of choice for imaging neurons and neural activity in deeply buried brain structures. Incorporating a Bessel focus scanning module into two-photon fluorescence microendoscopy, we extended the excitation focus axially and improved its lateral resolution. Scanning the Bessel focus in 2D, we imaged volumes of neurons at high-throughput while resolving fine structures such as synaptic terminals. We applied this approach to the volumetric anatomical imaging of dendritic spines and axonal boutons in the mouse hippocampus, and functional imaging of GABAergic neurons in the mouse lateral hypothalamus in vivo.


Small ◽  
2015 ◽  
Vol 12 (6) ◽  
pp. 782-792 ◽  
Author(s):  
Bin Chen ◽  
Guangxue Feng ◽  
Bairong He ◽  
Chiching Goh ◽  
Shidang Xu ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Friedrich Ihler ◽  
Mattis Bertlich ◽  
Bernhard Weiss ◽  
Steffen Dietzel ◽  
Martin Canis

Impairment of cochlear blood flow has been discussed as factor in the pathophysiology of various inner ear disorders. However, the microscopic study of cochlear microcirculation is limited due to small scale and anatomical constraints. Here, two-photon fluorescence microscopy is applied to visualize cochlear microvessels. Guinea pigs were injected with Fluorescein isothiocyanate- or Texas red-dextrane as plasma marker. Intravital microscopy was performed in four animals and explanted cochleae from four animals were studied. The vascular architecture of the cochlea was visualized up to a depth of90.0±22.7 μm. Imaging yielded a mean contrast-to-noise ratio (CNR) of3.3±1.7. Mean diameter in vivo was16.5±6.0 μm for arterioles and8.0±2.4 μm for capillaries. In explanted cochleae, the diameter of radiating arterioles and capillaries was measured with12.2±1.6 μm and6.6±1.0 μm, respectively. The difference between capillaries and arterioles was statistically significant in both experimental setups (P<0.001andP=0.022, two-way ANOVA). Measured vessel diameters in vivo and ex vivo were in agreement with published data. We conclude that two-photon fluorescence microscopy allows the investigation of cochlear microvessels and is potentially a valuable tool for inner ear research.


2015 ◽  
Vol 3 (5) ◽  
pp. 646-651 ◽  
Author(s):  
Pei-Pei Yang ◽  
Yang Yang ◽  
Yu-Juan Gao ◽  
Yi Wang ◽  
Ju-Chen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document