scholarly journals A causal role for the precuneus in network-wide theta and gamma oscillatory activity during complex memory retrieval

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Melissa Hebscher ◽  
Jed A Meltzer ◽  
Asaf Gilboa

Complex memory of personal events is thought to depend on coordinated reinstatement of cortical representations by the medial temporal lobes (MTL). MTL-cortical theta and gamma coupling is believed to mediate such coordination, but which cortical structures are critical for retrieval and how they influence oscillatory coupling is unclear. We used magnetoencephalography (MEG) combined with continuous theta burst stimulation (cTBS) to (i) clarify the roles of theta and gamma oscillations in network-wide communication during naturalistic memory retrieval, and (ii) understand the causal relationship between cortical network nodes and oscillatory communication. Retrieval was associated with MTL-posterior neocortical theta phase coupling and theta-gamma phase-amplitude coupling relative to a rest period. Precuneus cTBS altered MTL-neocortical communication by modulating theta and gamma oscillatory coupling. These findings provide a mechanistic account for MTL-cortical communication and demonstrate that the precuneus is a critical cortical node of oscillatory activity, coordinating cross-regional interactions that drive remembering.

2021 ◽  
Author(s):  
Daniel Ramirez-Gordillo ◽  
Andrew A. Parra ◽  
K. Ulrich Bayer ◽  
Diego Restrepo

Learning and memory requires coordinated activity between different regions of the brain. Here we studied the interaction between medial prefrontal cortex (mPFC) and hippocampal dorsal CA1 during associative odorant discrimination learning in the mouse. We found that as the animal learns to discriminate odorants in a go-no go task the coupling of high frequency neural oscillations to the phase of theta oscillations (phase-amplitude coupling or PAC) changes in a manner that results in divergence between rewarded and unrewarded odorant-elicited changes in the theta-phase referenced power (tPRP) for beta and gamma oscillations. In addition, in the proficient animal there was a decrease in the coordinated oscillatory activity between CA1 and mPFC in the presence of the unrewarded odorant. Furthermore, the changes in PAC resulted in a marked increase in the accuracy for decoding odorant identity from tPRP when the animal became proficient. Finally, we studied the role of Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα), a protein involved in learning and memory, in oscillatory neural processing in this task. We find that the accuracy for decoding the odorant identity from tPRP decreases in CaMKIIα knockout mice and that this accuracy correlates with behavioral performance. These results implicate a role for PAC and CaMKIIα in olfactory go-no go associative learning in the hippocampal-prefrontal circuit.


Vision ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 22
Author(s):  
Nelson Cortes ◽  
Bruno O. F. de Souza ◽  
Christian Casanova

The cortical visual hierarchy communicates in different oscillatory ranges. While gamma waves influence the feedforward processing, alpha oscillations travel in the feedback direction. Little is known how this oscillatory cortical communication depends on an alternative route that involves the pulvinar nucleus of the thalamus. We investigated whether the oscillatory coupling between the primary visual cortex (area 17) and area 21a depends on the transthalamic pathway involving the pulvinar in cats. To that end, visual evoked responses were recorded in areas 17 and 21a before, during and after inactivation of the pulvinar. Local field potentials were analyzed with Wavelet and Granger causality tools to determine the oscillatory coupling between layers. The results indicate that cortical oscillatory activity was enhanced during pulvinar inactivation, in particular for area 21a. In area 17, alpha band responses were represented in layers II/III. In area 21a, gamma oscillations, except for layer I, were significantly increased, especially in layer IV. Granger causality showed that the pulvinar modulated the oscillatory information between areas 17 and 21a in gamma and alpha bands for the feedforward and feedback processing, respectively. Together, these findings indicate that the pulvinar is involved in the mechanisms underlying oscillatory communication along the visual cortex.


Hippocampus ◽  
2021 ◽  
Author(s):  
Thackery I. Brown ◽  
Qiliang He ◽  
Irem Aselcioglu ◽  
Chantal E. Stern

2021 ◽  
pp. 1-11
Author(s):  
Adam S. Bernstein ◽  
Steven Z. Rapcsak ◽  
Michael Hornberger ◽  
Manojkumar Saranathan ◽  

Background: Increasing evidence suggests that thalamic nuclei may atrophy in Alzheimer’s disease (AD). We hypothesized that there will be significant atrophy of limbic thalamic nuclei associated with declining memory and cognition across the AD continuum. Objective: The objective of this work was to characterize volume differences in thalamic nuclei in subjects with early and late mild cognitive impairment (MCI) as well as AD when compared to healthy control (HC) subjects using a novel MRI-based thalamic segmentation technique (THOMAS). Methods: MPRAGE data from the ADNI database were used in this study (n = 540). Healthy control (n = 125), early MCI (n = 212), late MCI (n = 114), and AD subjects (n = 89) were selected, and their MRI data were parcellated to determine the volumes of 11 thalamic nuclei for each subject. Volumes across the different clinical subgroups were compared using ANCOVA. Results: There were significant differences in thalamic nuclei volumes between HC, late MCI, and AD subjects. The anteroventral, mediodorsal, pulvinar, medial geniculate, and centromedian nuclei were significantly smaller in subjects with late MCI and AD when compared to HC subjects. Furthermore, the mediodorsal, pulvinar, and medial geniculate nuclei were significantly smaller in early MCI when compared to HC subjects. Conclusion: This work highlights nucleus specific atrophy within the thalamus in subjects with early and late MCI and AD. This is consistent with the hypothesis that memory and cognitive changes in AD are mediated by damage to a large-scale integrated neural network that extends beyond the medial temporal lobes.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Lu Zhang ◽  
John Lee ◽  
Christopher Rozell ◽  
Annabelle C Singer

Oscillatory brain activity reflects different internal brain states including neurons’ excitatory state and synchrony among neurons. However, characterizing these states is complicated by the fact that different oscillations are often coupled, such as gamma oscillations nested in theta in the hippocampus, and changes in coupling are thought to reflect distinct states. Here, we describe a new method to separate single oscillatory cycles into distinct states based on frequency and phase coupling. Using this method, we identified four theta-gamma coupling states in rat hippocampal CA1. These states differed in abundance across behaviors, phase synchrony with other hippocampal subregions, and neural coding properties suggesting that these states are functionally distinct. We captured cycle-to-cycle changes in oscillatory coupling states and found frequent switching between theta-gamma states showing that the hippocampus rapidly shifts between different functional states. This method provides a new approach to investigate oscillatory brain dynamics broadly.


Sign in / Sign up

Export Citation Format

Share Document