oscillatory brain activity
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 45)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Pankaj Pandey ◽  
Richa Tripathi ◽  
Krishna Prasad Miyapuram

Abstract Neural oscillations are the rich source to understand cognition, perception, and emotions. Decades of research on brain oscillations have primarily discussed neural signatures for the western classification of emotions. Despite this, the Indian ancient treatise on emotions popularly known as Rasas has remained unexplored. In this study, we collected Electroencephalography (EEG) encodings while participants watched nine emotional movie clips corresponding to nine Rasas. The key objective of this study is to identify the brain waves that could distinguish between Rasas. Therefore, we decompose the EEG signals into five primary frequency bands comprising delta (1-4 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz). We construct the functional networks from EEG time-series data and subsequently utilize the fourteen graph-theoretical measures to compute the features. Random Forest models are trained on the extracted features, and we present our findings based on classifier predictions. We observe slow (delta) and fast brain waves (beta and gamma) exhibited the maximum discriminating features between Rasas, whereas alpha and theta bands showed fewer distinguishable pairs. Out of nine Rasas, Sringaram, Bibhatsam, and Bhayanakam displayed the most distinguishing characteristics from other Rasas. Interestingly, our results are consistent with the previous studies, which highlight the significant role of higher frequency oscillations for the classification of emotions. Our finding on the alpha band is consistent with the previous study, which reports the maximum similarity in brain networks across emotions in the alpha band. This research contributes to the pioneering work on Indian Rasas utilizing brain responses.


2021 ◽  
Author(s):  
Kyveli Kompatsiari ◽  
Francesco Bossi ◽  
Agnieszka Wykowska

Eye contact established by a human partner has been shown to affect various cognitive processes of the receiver. However, little is known about humans’ responses to eye contact established by a humanoid robot. Here, we aimed at examining humans’ oscillatory brain response to eye contact with a humanoid robot. Eye contact (or lack thereof) was embedded in a gaze cueing task and preceded the phase of gaze-related attentional orienting. In addition to examining the effect of eye contact on the recipient, we also tested its impact on gaze cueing effects. Results showed that participants rated eye contact as more engaging and responded with higher desynchronization of alpha-band activity in left fronto-central and central electrode clusters when the robot established eye contact with them, compared to no eye contact condition. However, eye contact did not modulate gaze cueing effects. The results are interpreted in terms of the functional roles involved in alpha central rhythms (potentially interpretable also as mu rhythm), including joint attention and engagement in social interaction.


2021 ◽  
Vol 21 (12) ◽  
Author(s):  
Jacopo Pasquini ◽  
Roberto Ceravolo

Abstract Purpose of Review Tremor is a hyperkinetic movement disorder most commonly encountered in essential tremor (ET) and Parkinson’s disease (PD). The purpose of this review is to summarize molecular neuroimaging studies with major implications on pathophysiological and clinical features of tremor. Recent Findings Oscillatory brain activity responsible for tremor manifestation is thought to originate in a cerebello-thalamo-cortical network. Molecular neuroimaging has helped clarify metabolic aspects and neurotransmitter influences on the main tremor network. In ET, recent positron emission tomography (PET) studies are built on previous knowledge and highlighted the possibility of investigating metabolic brain changes after treatments, in the attempt to establish therapeutic biomarkers. In PD, molecular neuroimaging has advanced the knowledge of non-dopaminergic determinants of tremor, providing insights into serotonergic and noradrenergic contributions. Summary Recent advances have greatly extended the knowledge of tremor pathophysiology and it is now necessary to translate such knowledge in more efficacious treatments for this symptom.


Author(s):  
Milou J.L. van Helvert ◽  
Leonie Oostwoud Wijdenes ◽  
Linda Geerligs ◽  
W. Pieter Medendorp

While beta-band activity during motor planning is known to be modulated by uncertainty about where to act, less is known about its modulations to uncertainty about how to act. To investigate this issue, we recorded oscillatory brain activity with EEG while human participants (n = 17) performed a hand choice reaching task. The reaching hand was either predetermined or of participants' choice, and the target was close to one of the two hands or at about equal distance from both. To measure neural activity in a motion-artifact-free time window, the location of the upcoming target was cued 1000-1500 ms before the presentation of the target, whereby the cue was valid in 50% of trials. As evidence for motor planning during the cueing phase, behavioral observations showed that the cue affected later hand choice. Furthermore, reaction times were longer in the choice than in the predetermined trials, supporting the notion of a competitive process for hand selection. Modulations of beta-band power over central cortical regions, but not alpha-band or theta-band power, were in line with these observations. During the cueing period, reaches in predetermined trials were preceded by larger decreases in beta-band power than reaches in choice trials. Cue direction did not affect reaction times or beta-band power, which may be due to the cue being invalid in 50% of trials, retaining effector uncertainty during motor planning. Our findings suggest that effector uncertainty, similar to target uncertainty, selectively modulates beta-band power during motor planning.


2021 ◽  
Author(s):  
Kierstin Riels ◽  
Rafaela Ramos Campagnoli ◽  
Nina Thigpen ◽  
Andreas Keil

2021 ◽  
pp. 002216782110418
Author(s):  
Paul Grof

As humanity has been utilizing psychedelic substances for millennia, much knowledge has already been accumulated about the exploratory potential and therapeutic power of the psychedelic-induced nonordinary states of consciousness (NSC). However, we still have only a limited understanding of the process that unfolds in mind and the brain. Only recently have systematic investigations become possible, as the myths about psychedelics are abating and the legal strictures gradually loosening. With the availability of brain imaging techniques, exciting findings have been made about the associated dynamic brain processes. Our prospective observations of spontaneously generated NSC, major mood disorders, have been elucidating another dynamic aspect, the oscillatory brain processes. The findings indicate that the NSC’s propensity is markedly increased at the peaks of the oscillatory brain activity and that the NSC entirely unfolds when the oscillations exceed their normal range. The observation that neurobiological correlates of experientially opposite NSC, melancholy and mania, appear qualitatively the same is compatible with the concept that the experiential content is emerging from nonlocal consciousness. Psychedelic experiences are triggered by the administration of the psychedelic drug. However, they are influenced by nondrug factors and molded, in particular, by the individual’s mental set and the setting of the session. The transformative process can be utilized psychotherapeutically for healing and profound inner restructuring.


Author(s):  
Stefania Rasulo ◽  
Kenneth Vilhelmsen ◽  
F. R. van der Weel ◽  
Audrey L. H. van der Meer

AbstractThis study investigated evoked and oscillatory brain activity in response to forward visual motion at three different ecologically valid speeds, simulated through an optic flow pattern consisting of a virtual road with moving poles at either side of it. Participants were prelocomotor infants at 4–5 months, crawling infants at 9–11 months, primary school children at 6 years, adolescents at 12 years, and young adults. N2 latencies for motion decreased significantly with age from around 400 ms in prelocomotor infants to 325 ms in crawling infants, and from 300 and 275 ms in 6- and 12-year-olds, respectively, to 250 ms in adults. Infants at 4–5 months displayed the longest latencies and appeared unable to differentiate between motion speeds. In contrast, crawling infants at 9–11 months and 6-year-old children differentiated between low, medium and high speeds, with shortest latency for low speed. Adolescents and adults displayed similar short latencies for the three motion speeds, indicating that they perceived them as equally easy to detect. Time–frequency analyses indicated that with increasing age, participants showed a progression from low- to high-frequency desynchronized oscillatory brain activity in response to visual motion. The developmental differences in motion speed perception are interpreted in terms of a combination of neurobiological development and increased experience with self-produced locomotion. Our findings suggest that motion speed perception is not fully developed until adolescence, which has implications for children’s road traffic safety.


2021 ◽  
Vol 11 (8) ◽  
pp. 1095
Author(s):  
Naoyuki Takeuchi ◽  
Shin-Ichi Izumi

Developing effective tools and strategies to promote motor learning is a high-priority scientific and clinical goal. In particular, motor-related areas have been investigated as potential targets to facilitate motor learning by noninvasive brain stimulation (NIBS). In addition to shedding light on the relationship between motor function and oscillatory brain activity, transcranial alternating current stimulation (tACS), which can noninvasively entrain oscillatory brain activity and modulate oscillatory brain communication, has attracted attention as a possible technique to promote motor learning. This review focuses on the use of tACS to enhance motor learning through the manipulation of oscillatory brain activity and its potential clinical applications. We discuss a potential tACS–based approach to ameliorate motor deficits by correcting abnormal oscillatory brain activity and promoting appropriate oscillatory communication in patients after stroke or with Parkinson’s disease. Interpersonal tACS approaches to manipulate intra- and inter-brain communication may result in pro-social effects and could promote the teaching–learning process during rehabilitation sessions with a therapist. The approach of re-establishing oscillatory brain communication through tACS could be effective for motor recovery and might eventually drive the design of new neurorehabilitation approaches based on motor learning.


Author(s):  
Patrick Ring ◽  
Julian Keil ◽  
Muthuraman Muthuraman ◽  
Stephan Wolff ◽  
Til Ole Bergmann ◽  
...  

Understanding the neural correlates of risk-sensitive skin conductance responses can provide insights into their connection to emotional and cognitive processes. To provide insights into this connection, we studied the cortical correlates of risk-sensitive skin conductance peaks using electroencephalography. Fluctuations in skin conductance responses were elicited while participants played a threat-of-shock-card-game. Precise temporal information about skin conductance peaks were obtained by applying continuous decomposition analysis on raw electrodermal signals. Shortly preceding skin conductance peaks, we observed a decrease in oscillatory power in the frequency range between 3 and 17 Hz in occipitotemporal cortical areas. Atlas-based analysis indicated the left lingual gyrus as the source of the power decrease. The oscillatory power averaged across 3 to 17 Hz showed a significant negative relationship with the skin conductance peak amplitude. Our findings indicate a possible interaction between attention and threat perception.


Sign in / Sign up

Export Citation Format

Share Document