scholarly journals Novel RNA and DNA strand exchange activity of the PALB2 DNA binding domain and its critical role for DNA repair in cells

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jaigeeth Deveryshetty ◽  
Thibaut Peterlini ◽  
Mikhail Ryzhikov ◽  
Nadine Brahiti ◽  
Graham Dellaire ◽  
...  

BReast Cancer Associated proteins 1 and 2 (BRCA1, −2) and Partner and Localizer of BRCA2 (PALB2) protein are tumour suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. PALB2 coordinates functions of BRCA1 and BRCA2 during homology-directed repair (HDR) and interacts with several chromatin proteins. In addition to protein scaffold function, PALB2 binds DNA. The functional role of this interaction is poorly understood. We identified a major DNA-binding site of PALB2, mutations in which reduce RAD51 foci formation and the overall HDR efficiency in cells by 50%. PALB2 N-terminal DNA-binding domain (N-DBD) stimulates the function of RAD51 recombinase. Surprisingly, it possesses the strand exchange activity without RAD51. Moreover, N-DBD stimulates the inverse strand exchange and can use DNA and RNA substrates. Our data reveal a versatile DNA interaction property of PALB2 and demonstrate a critical role of PALB2 DNA binding for chromosome repair in cells.

2018 ◽  
Author(s):  
Jaigeeth Deveryshetty ◽  
Mikhail Ryzhikov ◽  
Nadine Brahati ◽  
Thibaut Peterlini ◽  
Graham Dellaire ◽  
...  

Breast cancer associated proteins 1 and 2 (BRCA1, -2) and partner and localizer of BRCA2 (PALB2) protein are tumor suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. They stimulate RAD51 recombinase during homology-directed repair (HDR). Along with being a hub for a protein interaction network, PALB2 interacts with DNA. The mechanism of PALB2 DNA binding and its function are poorly understood. We identified a major DNA-binding site in PALB2, mutation of which reduces the RAD51 foci formation and the overall HDR efficiency in cells by 50%. PALB2 N-terminal DNA-binding domain (N-DBD) stimulates the RAD51 strand exchange reaction. Surprisingly, it promotes the strand exchange without RAD51. Moreover, N-DBD stimulates the inverse strand exchange and can use both DNA and RNA substrates. Our data reveal a versatile DNA interaction property of PALB2 and demonstrate a critical role of PALB2 DNA binding for chromosome repair in cells.


2019 ◽  
Author(s):  
Jaigeeth Deveryshetty ◽  
Thibaut Peterlini ◽  
Mikhail Ryzhikov ◽  
Nadine Brahiti ◽  
Graham Dellaire ◽  
...  

1992 ◽  
Vol 12 (9) ◽  
pp. 3834-3842 ◽  
Author(s):  
H Uemura ◽  
Y Jigami

The Saccharomyces cerevisiae GCR2 gene affects expression of most of the glycolytic genes. We report the nucleotide sequence of GCR2, which can potentially encode a 58,061-Da protein. There is a small cluster of asparagines near the center and a C-terminal region that would be highly charged but overall neutral. Fairly homologous regions were found between Gcr2 and Gcr1 proteins. To test potential interactions, the genetic method of S. Fields and O. Song (Nature [London] 340:245-246, 1989), which uses protein fusions of candidate gene products with, respectively, the N-terminal DNA-binding domain of Gal4 and the C-terminal activation domain II, assessing restoration of Gal4 function, was used. In a delta gal4 delta gal80 strain, double transformation by plasmids containing, respectively, a Gal4 (transcription-activating region)/Gcr1 fusion and a Gal4 (DNA-binding domain)/Gcr2 fusion activated lacZ expression from an integrated GAL1/lacZ fusion, indicating reconstitution of functional Gal4 through the interaction of Gcr1 and Gcr2 proteins. The Gal4 (transcription-activating region)/Gcr1 fusion protein alone complemented the defects of both gcr1 and gcr2 strains. Furthermore, a Rap1/Gcr2 fusion protein partially complemented the defects of gcr1 strains. These results suggest that Gcr2 has transcriptional activation activity and that the GCR1 and GCR2 gene products function together.


1999 ◽  
Vol 19 (4) ◽  
pp. 2880-2886 ◽  
Author(s):  
Asish K. Ghosh ◽  
Robert Steele ◽  
Ratna B. Ray

ABSTRACT We initially identified c-myc promoter binding protein 1 (MBP-1), which negatively regulates c-myc promoter activity, from a human cervical carcinoma cell expression library. Subsequent studies on the biological role of MBP-1 demonstrated induction of cell death in fibroblasts and loss of anchorage-independent growth, reduced invasive ability, and tumorigenicity of human breast carcinoma cells. To investigate the potential role of MBP-1 as a transcriptional regulator, a chimeric protein containing MBP-1 fused to the DNA binding domain of the yeast transactivator factor GAL4 was constructed. This fusion protein exhibited repressor activity on the herpes simplex virus thymidine kinase promoter via upstream GAL4 DNA binding sites. Structure-function analysis of mutant MBP-1 in the context of the GAL4 DNA binding domain revealed that MBP-1 transcriptional repressor domains are located in the N terminus (amino acids 1 to 47) and C terminus (amino acids 232 to 338), whereas the activation domain lies in the middle (amino acids 140 to 244). The N-terminal domain exhibited stronger transcriptional repressor activity than the C-terminal region. When the N-terminal repressor domain was transferred to a potent activator, transcription was strongly inhibited. Both of the repressor domains contained hydrophobic regions and had an LXVXL motif in common. Site-directed mutagenesis in the repressor domains indicated that the leucine residues in the LXVXL motif are required for transcriptional repression. Mutation of the leucine residues in the common motif of MBP-1 also abrogated the repressor activity on the c-mycpromoter. In addition, the leucine mutant forms of MBP-1 failed to suppress cell growth in fibroblasts like wild-type MBP-1. Taken together, our results indicate that MBP-1 is a complex cellular factor containing multiple transcriptional regulatory domains that play an important role in cell growth regulation.


1996 ◽  
Vol 264 (5) ◽  
pp. 1002-1012 ◽  
Author(s):  
Konstantin Pervushin ◽  
Martin Billeter ◽  
Gregg Siegal ◽  
Kurt Wüthrich

1998 ◽  
Vol 18 (7) ◽  
pp. 4197-4208 ◽  
Author(s):  
Kannan Thirunavukkarasu ◽  
Muktar Mahajan ◽  
Keith W. McLarren ◽  
Stefano Stifani ◽  
Gerard Karsenty

ABSTRACT Osf2/Cbfa1, hereafter called Osf2, is a member of the Runt-related family of transcription factors that plays a critical role during osteoblast differentiation. Like all Runt-related proteins, it contains a runt domain, which is the DNA-binding domain, and a C-terminal proline-serine-threonine-rich (PST) domain thought to be the transcription activation domain. Additionally, Osf2 has two amino-terminal domains distinct from any other Runt-related protein. To understand the mechanisms of osteoblast gene regulation by Osf2, we performed an extensive structure-function analysis. After defining a short Myc-related nuclear localization signal, a deletion analysis revealed the existence of three transcription activation domains and one repression domain. AD1 (for activation domain 1) comprises the first 19 amino acids of the molecule, which form the first domain unique to Osf2, AD2 is formed by the glutamine-alanine (QA) domain, the second domain unique to Osf2, and AD3 is located in the N-terminal half of the PST domain and also contains sequences unique to Osf2. The transcription repression domain comprises the C-terminal 154 amino acids of Osf2. DNA-binding, domain-swapping, and protein interaction experiments demonstrated that full-length Osf2 does not interact with Cbfβ, a known partner of Runt-related proteins, whereas a deletion mutant of Osf2 containing only the runt and PST domains does. The QA domain appears to be responsible for preventing this heterodimerization. Thus, our results uncover the unique functional organization of Osf2 by identifying functional domains not shared with other Runt-related proteins that largely control its transactivation and heterodimerization abilities.


2010 ◽  
Vol 89 (2-3) ◽  
pp. 175-183 ◽  
Author(s):  
Tobias Kirchler ◽  
Sebastian Briesemeister ◽  
Miriam Singer ◽  
Katia Schütze ◽  
Melanie Keinath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document