scholarly journals 5α-cyprinol sulfate, a bile salt from fish, induces diel vertical migration in Daphnia

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Meike Anika Hahn ◽  
Christoph Effertz ◽  
Laurent Bigler ◽  
Eric von Elert

Prey are under selection to minimize predation losses. In aquatic environments, many prey use chemical cues released by predators, which initiate predator avoidance. A prominent example of behavioral predator-avoidance constitutes diel vertical migration (DVM) in the freshwater microcrustacean Daphnia spp., which is induced by chemical cues (kairomones) released by planktivorous fish. In a bioassay-guided approach using liquid chromatography and mass spectrometry, we identified the kairomone from fish incubation water as 5α-cyprinol sulfate inducing DVM in Daphnia at picomolar concentrations. The role of 5α-cyprinol sulfate in lipid digestion in fish explains why from an evolutionary perspective fish has not stopped releasing 5α-cyprinol sulfate despite the disadvantages for the releaser. The identification of the DVM-inducing kairomone enables investigating its spatial and temporal distribution and the underlying molecular mechanism of its perception. Furthermore, it allows to test if fish-mediated inducible defenses in other aquatic invertebrates are triggered by the same compound.

2014 ◽  
Vol 60 (1) ◽  
pp. 252-262 ◽  
Author(s):  
Janet M. Fischer ◽  
Mark H. Olson ◽  
Nora Theodore ◽  
Craig E. Williamson ◽  
Kevin C. Rose ◽  
...  

2015 ◽  
Vol 37 (5) ◽  
pp. 886-896 ◽  
Author(s):  
Taylor H. Leach ◽  
Craig E. Williamson ◽  
Nora Theodore ◽  
Janet M. Fischer ◽  
Mark H. Olson

2015 ◽  
Vol 105 (2) ◽  
pp. 174-183 ◽  
Author(s):  
Marcos Marques Mendonça ◽  
Pablo Henrique dos Santos Picapedra ◽  
Michelli Caroline Ferronato ◽  
Paulo Vanderlei Sanches

ABSTRACT Based on the hypothesis that diel vertical migration (DVM) is a mechanism of predator avoidance, the objective of the present study was to test for the occurrence of DVM in planktivorous fish larvae of Hypophthalmus edentatus (Spix, 1829) (Siluriformes, Pimelodidae) and Plagioscion squamosissimus (Heckel, 1840) (Perciformes, Sciaenidae), and zooplankton (rotifers, cladocerans and copepods) in an isolated tropical lagoon in the floodplain of the Upper Paraná River, Brazil (region of Parque Nacional de Ilha Grande). We investigated spatial overlap between predators (planktivorous fish larvae) and prey (zooplankton), and tested which physical and chemical variables of the water are related to the DVM of the studied communities. We performed nocturnal (8:00 pm and 4:00 am) and diurnal sampling (8:00 am and 4:00 pm) in the limnetic region of the lagoon for six consecutive months, from October 2010 to March 2011, which comprises the reproductive period of the fish species analyzed. During the day the larvae tried to remain aggregated in the bottom of the lagoon, whereas at night they tried to disperse in the water column. Especially for cladocerans, the diel vertical migration is an important behavior to avoid predation larvae of H. edentatus and P. squamosissimus once decreased spatial overlap between secured and its potential predators, which corroborates the hypothesis that DVM is a mechanism of predator avoidance. Although significant correlations were observed between the abiotic factors and WMD of microcrustaceans at certain times of day, the effect of predation of fish larvae on zooplankton showed more important in this environment, because the small depth and isolation not allow great variation of abiotic factors seasonally and between strata the lagoon.


Sign in / Sign up

Export Citation Format

Share Document