endogenous rhythms
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 16)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Azure D. Grant ◽  
Linda Wilbrecht ◽  
Lance J. Kriegsfeld

Adolescence is a period of continuous development, including the maturation of endogenous rhythms across systems and timescales. Although, these dynamic changes are well-recognized, their continuous structure and hormonal dependence have not been systematically characterized. Given the well-established link between core body temperature (CBT) and reproductive hormones in adults, we hypothesized that high-resolution CBT can be applied to passively monitor pubertal development and disruption with high fidelity. To examine this possibility, we used signal processing to investigate the trajectory of CBT rhythms at the within-day (ultradian), daily (circadian), and ovulatory timescales, their dependence on estradiol (E2), and the effects of hormonal contraceptives. Puberty onset was marked by a rise in fecal estradiol (fE2), followed by an elevation in CBT and circadian power. This time period marked the commencement of 4-day rhythmicity in fE2, CBT, and ultradian power marking the onset of the estrous cycle. The rise in circadian amplitude was accelerated by E2 treatment, indicating a role for this hormone in rhythmic development. Contraceptive administration in later adolescence reduced CBT and circadian power and resulted in disruption to 4-day cycles that persisted after discontinuation. Our data reveal with precise temporal resolution how biological rhythms change across adolescence and demonstrate a role for E2 in the emergence and preservation of multiscale rhythmicity. These findings also demonstrate how hormones delivered exogenously in a non-rhythmic pattern can disrupt rhythmic development. These data lay the groundwork for a future in which temperature metrics provide an inexpensive, convenient method for monitoring pubertal maturation and support the development of hormone therapies that better mimic and support human chronobiology.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Elizabeth M. Harrison ◽  
Alexandra P. Easterling ◽  
Emily A. Schmied ◽  
Suzanne L. Hurtado ◽  
Gena L. Glickman

AbstractService members are at risk for sleep and psychological conditions affecting their readiness. Chronotype (“morningness” or “eveningness”) is strongly associated with sleep, health and performance. The objective of this study was to examine associations between validated measures of chronotype and sleep quality, daytime functioning, alertness, and symptoms of depression, anxiety, and post-traumatic stress disorder (PTSD) in US service members (n = 298). Although predominantly young males (who skew toward eveningness in civilian populations), these Sailors skewed toward morningness (35.6% morning, 51.3% intermediate). Eveningness was associated with symptoms of depression and post-traumatic stress disorder (PTSD) (P < 0.01), less time in bed (P < 0.05), more sleep disruption (P < 0.01), and poorer daytime functioning and alertness (P < 0.05). Evening types were less likely to consider sleep important for performance (P < 0.05). To maximize service member readiness, schedules should be aligned with endogenous rhythms, whenever possible, and evening chronotypes may benefit from targeted interventions. Chronotype should be examined alongside health and readiness in service members.


2021 ◽  
Author(s):  
Azure Dominique Grant ◽  
Linda Wilbrecht ◽  
Lance J Kriegsfeld

Purpose: Adolescence is a period of continuous development, including the maturation of endogenous rhythms across systems and timescales. Although these dynamic changes are well recognized, their continuous structure and hormonal dependence have not been systematically characterized. Given the well-established link between core body temperature (CBT) and reproductive hormones in adults, we hypothesized that high-resolution CBT can be applied to passively monitor pubertal development and disruption with high fidelity. Methods: To examine this possibility, we used signal processing to investigate the trajectory of CBT rhythms at the within-day (ultradian), daily (circadian), and ovulatory timescales, their dependence on estradiol, and the effects of hormonal contraceptives. Results: Puberty onset was marked by a rise in fecal estradiol (fE2), followed by an elevation in CBT and circadian power. This time period marked the commencement of 4-day rhythmicity in fE2, CBT, and ultradian power marking the onset of the estrous cycle. The rise in circadian amplitude was accelerated by E2 treatment, indicating a role for this hormone in rhythmic development. Contraceptive administration in later adolescence reduced CBT and circadian power and resulted in disruption to 4-day cycles that persisted after discontinuation. Conclusions: Our data reveal with precise temporal resolution how biological rhythms change across adolescence and demonstrate a role for E2 in the emergence and preservation of multiscale rhythmicity. These findings also demonstrate how hormones delivered exogenously in a non-rhythmic pattern can disrupt rhythmic development. These data lay the groundwork for a future in which temperature metrics provide an inexpensive, convenient method for monitoring pubertal maturation and support the development of hormone therapies that better mimic and support human chronobiology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peter Q. Pfordresher ◽  
Emma B. Greenspon ◽  
Amy L. Friedman ◽  
Caroline Palmer

Individuals typically produce auditory sequences, such as speech or music, at a consistent spontaneous rate or tempo. We addressed whether spontaneous rates would show patterns of convergence across the domains of music and language production when the same participants spoke sentences and performed melodic phrases on a piano. Although timing plays a critical role in both domains, different communicative and motor constraints apply in each case and so it is not clear whether music and speech would display similar timing mechanisms. We report the results of two experiments in which adult participants produced sequences from memory at a comfortable spontaneous (uncued) rate. In Experiment 1, monolingual pianists in Buffalo, New York engaged in three production tasks: speaking sentences from memory, performing short melodies from memory, and tapping isochronously. In Experiment 2, English-French bilingual pianists in Montréal, Canada produced melodies on a piano as in Experiment 1, and spoke short rhythmically-structured phrases repeatedly. Both experiments led to the same pattern of results. Participants exhibited consistent spontaneous rates within each task. People who produced one spoken phrase rapidly were likely to produce another spoken phrase rapidly. This consistency across stimuli was also found for performance of different musical melodies. In general, spontaneous rates across speech and music tasks were not correlated, whereas rates of tapping and music were correlated. Speech rates (for syllables) were faster than music rates (for tones) and speech showed a smaller range of spontaneous rates across individuals than did music or tapping rates. Taken together, these results suggest that spontaneous rate reflects cumulative influences of endogenous rhythms (in consistent self-generated rates within domain), peripheral motor constraints (in finger movements across tapping and music), and communicative goals based on the cultural transmission of auditory information (slower rates for to-be-synchronized music than for speech).


2021 ◽  
Vol 11 (5) ◽  
pp. 437
Author(s):  
Alexander Fedotchev ◽  
Sergey Parin ◽  
Sofia Polevaya ◽  
Anna Zemlianaia

The creation and improvement of non-invasive closed-loop brain stimulation technologies represent an exciting and rapidly expanding field of neuroscience. To identify the appropriate way to close the feedback loop in adaptive neurostimulation procedures, it was previously proposed to use on-line automatic sensory stimulation with the parameters modulated by the patient’s own rhythmical processes, such as respiratory rate, heart rate, and electroencephalogram (EEG) rhythms. The current paper aims to analyze several recent studies demonstrating further development in this line of research. The advantages of using automatic closed-loop feedback from human endogenous rhythms in non-invasive adaptive neurostimulation procedures have been demonstrated for relaxation assistance, for the correction of stress-induced functional disturbances, for anxiety management, and for the cognitive rehabilitation of an individual. Several distinctive features of the approach are noted to delineate its further development.


Author(s):  
Alexey A. Afonin

Almond willow (Salix triandra L.) is a valuable basket species that is used to create plantings for various purposes. He occupies a special place in the system of the genus Salix. He can be used as a model object to identify patterns of morphogenesis of shoots. Object of research: model inbred population of almond willow in culture. Subject of research: seasonal dynamics of internode length on annual shoots of three-year-old seedlings willow of almond willow. The purpose of the research: to identify the seasonal dynamics of the length of internodes on annual shoots of almond willow against the background of a sharp change in early summer drought by cold rainy weather. Empirical methods for obtaining initial data: comparative-morphological. The obtained data were processed using the methods of analysis of dynamics series. It is found that seasonal trends in the dynamics of internode length are described by second-order regression equations with varying reliability. The configuration and topology of nonlinear seasonal trends are determined by individual differences between seedlings. The dynamics of deviations of internode length from seasonal trends correlates with the dynamics of hydrothermic conditions. Deviations in the length of internodes from seasonal trends are cyclical. The empirical series of deviations of the internode length from seasonal trends with high reliability are approximated by the sums of harmonic oscillations. The maximum contribution to the cyclical deviations of the internode length from seasonal trends is made by the rhythm with a period of fluctuations of 54 days. On most shoots, the influence of rhythms with a period of fluctuations of 36 and 27 days can be traced. Short-period rhythms detected on different shoots are irregular. In most observations, the specific rhythms of seasonal dynamics of internode length are determined by differences between shoots. The identified rhythms do not depend on hydrothermic conditions, on the length of shoots, on the length of internodes, or on seasonal trends in the dynamics of internode length. The hypothesis that the relationship between the dynamics of deviations in the length of internodes from seasonal trends and the dynamics of hydrothermic conditions is random is substantiated. Cyclicity deviations of internode length from seasonal trends are determined by endogenous rhythms of development.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 442
Author(s):  
Maria A. Nohales

The plant circadian clock has a pervasive influence on many aspects of plant biology and is proposed to function as a developmental manager. To do so, the circadian oscillator needs to be able to integrate a multiplicity of environmental signals and coordinate an extensive and diverse repertoire of endogenous rhythms accordingly. Recent studies on tissue-specific characteristics and spatial structure of the plant circadian clock suggest that such plasticity may be achieved through the function of distinct oscillators, which sense the environment locally and are then coordinated across the plant through both intercellular coupling and long-distance communication. This review summarizes the current knowledge on tissue-specific features of the clock in plants and their spatial organization and synchronization at the organismal level.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 579
Author(s):  
Aneta Kubištová ◽  
Veronika Spišská ◽  
Lucie Petrželková ◽  
Leona Hrubcová ◽  
Simona Moravcová ◽  
...  

The circadian clock regulates bodily rhythms by time cues that result from the integration of genetically encoded endogenous rhythms with external cycles, most potently with the light/dark cycle. Chronic exposure to constant light in adulthood disrupts circadian system function and can induce behavioral and physiological arrhythmicity with potential clinical consequences. Since the developing nervous system is particularly vulnerable to experiences during the critical period, we hypothesized that early-life circadian disruption would negatively impact the development of the circadian clock and its adult function. Newborn rats were subjected to a constant light of 16 lux from the day of birth through until postnatal day 20, and then they were housed in conditions of L12 h (16 lux): D12 h (darkness). The circadian period was measured by locomotor activity rhythm at postnatal day 60, and the rhythmic expressions of clock genes and tissue-specific genes were detected in the suprachiasmatic nuclei, retinas, and pineal glands at postnatal days 30 and 90. Our data show that early postnatal exposure to constant light leads to a prolonged endogenous period of locomotor activity rhythm and affects the rhythmic gene expression in all studied brain structures later in life.


2020 ◽  
Author(s):  
Manuel A. Giannoni-Guzmán ◽  
Emmanuel Rivera ◽  
Janpierre Aleman-Rios ◽  
Alexander M. Melendez Moreno ◽  
Melina Perez Ramos ◽  
...  

AbstractHoney bees utilize their circadian rhythms to accurately predict the time of day. This ability allows foragers to remember the specific timing of food availability and its location for several days. Previous studies have provided strong evidence toward light/dark cycles being the primary Zeitgeber for honey bees. Recent work in our laboratory described large individual variation in the endogenous period length of honey bee foragers from the same colony and differences in the endogenous rhythms under different constant temperatures. In this study, we further this work by examining temperature inside the honey bee colony. By placing temperature and light data loggers at different locations inside the colony we uncovered that temperature oscillates with a 24-hour period at the periphery of the colony. We then simulated this temperature oscillation in the laboratory and found that using the temperature cycle as a Zeitgeber, foragers present large individual differences in the phase of locomotor rhythms with respect to temperature. Moreover, foragers successfully entrain to these simulated temperature cycles and advancing the cycle by six hours, resulted in changes in the phase of locomotor activity for the most foragers in the assay. The results shown in this study highlight the importance of temperature as a potential Zeitgeber in the field. Future studies will examine the possible functional and evolutionary role of the observed phase differences of circadian rhythms.


Author(s):  
László Bozó ◽  
Tibor Csörgő

Over the past decades, spring temperatures have increased in temperate regions, which resulted in birds arriving earlier in spring. Nonetheless, the timing of some species’ spring migration relies on endogenous rhythms that are not affected by climate change. In this study, we analysed changes in the spring arrival dates of 36 bird species over two periods in 22 towns and villages in Southeast Hungary and West Romania. The first period covered the national spring migration counts between 1894 and 1926, while the second period took place between 2005 and 2019 and is based on our recent observation data. Our results show, that the average spring arrival dates of most long-distance migrant species have not changed significantly over the past 100 years. In contrast, in cases of medium and short-distance migrants, most species arrive earlier recently than in the past. This may be caused by the fact, that the migration habit of long-distance migrants is characterized by strong genetic determinants, so they can not react as quickly to the warmer spring weather in Europe as the medium and short-distance migrants. However, in cases of some long-distance migrants, the timing of spring migration changed due to the drying of wintering grounds.


Sign in / Sign up

Export Citation Format

Share Document