scholarly journals Author response: Epimutations are associated with CHROMOMETHYLASE 3-induced de novo DNA methylation

Author(s):  
Jered M Wendte ◽  
Yinwen Zhang ◽  
Lexiang Ji ◽  
Xiuling Shi ◽  
Rashmi R Hazarika ◽  
...  
2017 ◽  
Author(s):  
Meng Amy Li ◽  
Paulo P Amaral ◽  
Priscilla Cheung ◽  
Jan H Bergmann ◽  
Masaki Kinoshita ◽  
...  

2015 ◽  
Author(s):  
Marco Morselli ◽  
William A Pastor ◽  
Barbara Montanini ◽  
Kevin Nee ◽  
Roberto Ferrari ◽  
...  

2015 ◽  
Author(s):  
Todd Blevins ◽  
Ram Podicheti ◽  
Vibhor Mishra ◽  
Michelle Marasco ◽  
Jing Wang ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ba Van Vu ◽  
Quyet Nguyen ◽  
Yuki Kondo-Takeoka ◽  
Toshiki Murata ◽  
Naoki Kadotani ◽  
...  

AbstractTransposable elements are common targets for transcriptional and post-transcriptional gene silencing in eukaryotic genomes. However, the molecular mechanisms responsible for sensing such repeated sequences in the genome remain largely unknown. Here, we show that machinery of homologous recombination (HR) and RNA silencing play cooperative roles in copy number-dependent de novo DNA methylation of the retrotransposon MAGGY in the fungusPyricularia oryzae. Genetic and physical interaction studies revealed thatRecAdomain-containing proteins, includingP. oryzaehomologs ofRad51, Rad55, andRad57, together with an uncharacterized protein, Ddnm1, form complex(es) and mediate either the overall level or the copy number-dependence of de novo MAGGY DNA methylation, likely in conjunction with DNA repair. Interestingly,P. oryzaemutants of specific RNA silencing components (MoDCL1andMoAGO2)were impaired in copy number-dependence of MAGGY methylation. Co-immunoprecipitation of MoAGO2 and HR components suggested a physical interaction between the HR and RNA silencing machinery in the process.


2021 ◽  
Vol 22 (7) ◽  
pp. 3735
Author(s):  
Guillaume Velasco ◽  
Damien Ulveling ◽  
Sophie Rondeau ◽  
Pauline Marzin ◽  
Motoko Unoki ◽  
...  

DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.


2021 ◽  
Author(s):  
Daniel N. Weinberg ◽  
Phillip Rosenbaum ◽  
Xiao Chen ◽  
Douglas Barrows ◽  
Cynthia Horth ◽  
...  
Keyword(s):  
De Novo ◽  

Sign in / Sign up

Export Citation Format

Share Document