cell state
Recently Published Documents


TOTAL DOCUMENTS

589
(FIVE YEARS 237)

H-INDEX

55
(FIVE YEARS 14)

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
David J. Wright ◽  
Nicola A. L. Hall ◽  
Naomi Irish ◽  
Angela L. Man ◽  
Will Glynn ◽  
...  

Abstract Background Alternative splicing is a key mechanism underlying cellular differentiation and a driver of complexity in mammalian neuronal tissues. However, understanding of which isoforms are differentially used or expressed and how this affects cellular differentiation remains unclear. Long read sequencing allows full-length transcript recovery and quantification, enabling transcript-level analysis of alternative splicing processes and how these change with cell state. Here, we utilise Oxford Nanopore Technologies sequencing to produce a custom annotation of a well-studied human neuroblastoma cell line SH-SY5Y, and to characterise isoform expression and usage across differentiation. Results We identify many previously unannotated features, including a novel transcript of the voltage-gated calcium channel subunit gene, CACNA2D2. We show differential expression and usage of transcripts during differentiation identifying candidates for future research into state change regulation. Conclusions Our work highlights the potential of long read sequencing to uncover previously unknown transcript diversity and mechanisms influencing alternative splicing.


2021 ◽  
Vol 7 (50) ◽  
Author(s):  
N. Sumru Bayin ◽  
Dogukan Mizrak ◽  
Daniel N. Stephen ◽  
Zhimin Lao ◽  
Peter A. Sims ◽  
...  
Keyword(s):  

Cell ◽  
2021 ◽  
Vol 184 (25) ◽  
pp. 6119-6137.e26
Author(s):  
Srivatsan Raghavan ◽  
Peter S. Winter ◽  
Andrew W. Navia ◽  
Hannah L. Williams ◽  
Alan DenAdel ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alsu Missarova ◽  
Jaison Jain ◽  
Andrew Butler ◽  
Shila Ghazanfar ◽  
Tim Stuart ◽  
...  

AbstractscRNA-seq datasets are increasingly used to identify gene panels that can be probed using alternative technologies, such as spatial transcriptomics, where choosing the best subset of genes is vital. Existing methods are limited by a reliance on pre-existing cell type labels or by difficulties in identifying markers of rare cells. We introduce an iterative approach, geneBasis, for selecting an optimal gene panel, where each newly added gene captures the maximum distance between the true manifold and the manifold constructed using the currently selected gene panel. Our approach outperforms existing strategies and can resolve cell types and subtle cell state differences.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saradha Venkatachalapathy ◽  
Doorgesh S. Jokhun ◽  
Madhavi Andhari ◽  
G. V. Shivashankar

AbstractTumour progression within the tissue microenvironment is accompanied by complex biomechanical alterations of the extracellular environment. While histopathology images provide robust biochemical markers for tumor progression in clinical settings, a quantitative single cell score using nuclear morphology and chromatin organization integrated with the long range mechanical coupling within the tumor microenvironment is missing. We propose that the spatial chromatin organization in individual nuclei characterises the cell state and their alterations during tumor progression. In this paper, we first built an image analysis pipeline and implemented it to classify nuclei from patient derived breast tissue biopsies of various cancer stages based on their nuclear and chromatin features. Replacing H&E with DNA binding dyes such as Hoescht stained tissue biopsies, we improved the classification accuracy. Using the nuclear morphology and chromatin organization features, we constructed a pseudo-time model to identify the chromatin state changes that occur during tumour progression. This enabled us to build a single-cell mechano-genomic score that characterises the cell state during tumor progression from a normal to a metastatic state. To gain further insights into the alterations in the local tissue microenvironments, we also used the nuclear orientations to identify spatial neighbourhoods that have been posited to drive tumor progression. Collectively, we demonstrate that image-based single cell chromatin and nuclear features are important single cell biomarkers for phenotypic mapping of tumor progression.


2021 ◽  
Author(s):  
Scott R Tyler ◽  
Supinda Bunyavanich ◽  
Eric E Schadt

Single cell RNAseq (scRNAseq) batches range from technical replicates to multi-tissue atlases, thus requiring robust batch correction methods that operate effectively across this similarity spectrum. Currently, no metrics allow for full benchmarking across this spectrum, resulting in benchmarks that quantify removal of batch effects without quantifying preservation of real batch differences. Here, we address these gaps with a new statistical metric [Percent Maximum Difference (PMD)] that linearly quantifies batch similarity, and simulations generating cells from mixtures of distinct gene expression programs (cell-lineages/-types/-states). Using 690 real-world and 672 simulated integrations (7.2e6 cells total) we compared 7 batch integration approaches across the spectrum of similarity with batch-confounded gene expression. Count downsampling appeared the most robust, while others left residual batch effects or produced over-merged datasets. We further released open-source PMD and downsampling packages, with the latter capable of downsampling an organism atlas (245,389 cells) in tens of minutes on a standard computer.


2021 ◽  
Author(s):  
Laura Prochazka ◽  
Peter W Zandstra ◽  
Yale S Michaels ◽  
Charles Lau ◽  
Mona Siu ◽  
...  

During development, state transitions are coordinated through changes in the identity of molecular regulators in a cell state- and dose specific manner. The ability to rationally engineer such functions in human pluripotent stem cells (hPSC) will enable numerous applications in regenerative medicine. Herein we report the generation of synthetic gene circuits that can detect a discrete cell state, and upon state detection, produce fine-tuned effector proteins in a programmable manner. Effectively, these gene circuits convert a discrete (digital-like) cell state into an analog signal by merging AND-like logic integration of endogenous miRNAs (classifiers) with a miRNA-mediated output fine-tuning technology (miSFITs). Using an automated miRNA identification and model-guided circuit optimization approach, we were able to produce robust cell state specific and graded output production in undifferentiated hPSC. We further finely controlled the levels of endogenous BMP4 secretion, which allowed us to document the effect of endogenous factor secretion in comparison to exogenous factor addition on early tissue development using the hPSC-derived gastruloid system. Our work provides the first demonstration of a discrete-to-analog signal conversion circuit operating in living hPSC, and a platform for customized cell state-specific control of desired physiological factors, laying the foundation for programming cell compositions in hPSC-derived tissues and beyond.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 785-785
Author(s):  
Pamela J. Sung ◽  
Simone Sidoli ◽  
Simone S. Riedel ◽  
Katarzyna Kulej ◽  
Hongbo Xie ◽  
...  

Abstract Internal tandem duplication mutations in the Fms-like tyrosine kinase 3 (FLT3-ITD) are frequently recurring in AML and confer a poor prognosis. FLT3 inhibitors (FLT3i) such as gilteritinib are efficacious in relapsed AML. Clinical responses to FLT3i include myeloid differentiation of the FLT3-ITD clone in about 50% of patients. How FLT3i induce this response in a subset of patients is unknown. The FLT3i-induced differentiation response seen in clinical trials has not previously been demonstrated in animal models. We modeled FLT3i-induced differentiation in murine Flt3 ITD/ITDDnmt3a -/- AML model (Meyer et al., Cancer Discovery, 2016). Treatment with FLT3i in vitro accelerated differentiation of cKIT+ leukemic splenocytes as assessed by colony morphology in serial re-plating assays. To characterize the differentiation response in vivo, we transplanted CD45.2+ leukemic splenocytes from moribund mice into sub-lethally irradiated healthy congenic CD45.1+ mice. After confirmation of engraftment at 2 weeks post-irradiation, mice were treated with vehicle or gilteritinib for 4 weeks. Animals treated with gilteritinib demonstrated increased neutrophil and decreased stem/progenitor cell populations, recapitulating the clinically observed increase in granulocytic differentiation of the FLT3-ITD clone. We next sought to understand the molecular mechanism of FLT3i-induced differentiation. We used a proteomic-based screen in a human AML cell line treated with FLT3i to identify novel targets of FLT3-ITD that could be potential mediators of the differentiation response. We identified downregulation of Enhancer of Zeste Homolog 2 (EZH2), the catalytic component of the Polycomb Repressive Complex 2 (PRC2). EZH2 and PRC2 were previously shown to be required for leukemic maintenance in mouse models of MLL-AF9 AML. We treated murine Flt3 ITD/ITDDnmt3a -/- cKIT+ leukemic splenocytes with FLT3i or the EZH1/2 inhibitor (EZH1/2i). Both promoted myeloid differentiation to similar degrees as assessed by colony morphology in this model. We hypothesized that FLT3-ITD regulates EZH2 to maintain leukemia cells in a stem/progenitor cell state. We, therefore, characterized the effect of FLT3i on PRC2 in more detail. We confirmed that FLT3i decreases EZH2 protein levels in FLT3-ITD cell lines and primary human AML within 24 hours of treatment as suggested by our proteomic data (Figure 1A-B). We found that the mechanism of EZH2 downregulation is complex with both transcriptional effects and a decrease in EZH2 protein half-life. ChIP-Seq for H3K27me3 demonstrated decreased peaks at the transcription start sites of PRC2 target genes (Figure 1C). RNA-Seq gene expression profiles of FLT3i- and EZH1/2i-treated human AML cells overlapped at 253 differentially expressed genes (Figure 1D). Critically, both FLT3i and EZH1/2i expression profiles enriched in differentiated myeloid cell gene signatures. Overall, we found that EZH2 is a novel, unexpected, and clinically relevant target of FLT3-ITD. Our data suggest that reduced EZH2 activity following FLT3 inhibition promotes myeloid differentiation of FLT3-ITD leukemic cells, providing a mechanistic explanation for the FLT3i-induced differentiation response seen in patients. These data demonstrate that FLT3-ITD has at least two functions in leukemogenesis, the well described activation of signaling pathways, and second, a previously undefined, regulation of PRC2 to maintain a myeloid stem cell state. Our results may lead to improved approaches to therapy for FLT3 mutated AML. Figure 1 Figure 1. Disclosures Bernt: Syndax: Research Funding; Merck: Other: Spouse is an employee of Merck.. Carroll: Incyte Pharmaceuticals: Research Funding; Janssen Pharmaceutical: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1581-1581
Author(s):  
Danielle C Croucher ◽  
Laura M Richards ◽  
Zhihua Li ◽  
Ellen nong Wei ◽  
Xian Fang Huang ◽  
...  

Abstract Introduction: Immune checkpoint receptor (ICR) blockade has emerged as an effective anti-tumour modality, but only in a subset of cancer patients. Moreover, in Multiple myeloma (MM), single-agent activity has not been observed, highlighting the need to better understand the mechanism of action of this class of drugs. We recently showed that combinatorial ICR blockade using αLAG3 and αPD-1 delays disease progression and improves survival in the transplantable Vκ*MYC model of MM (Croucher et al. ASH 2018). However, despite this being a controlled study with genetically-homogeneous tumours, anti-tumour immune responses were heterogeneous, with only a subset of mice demonstrating a delay in tumour progression (17/29 mice, response rate = 58.6%). Thus, using this model, we set out to define mechanisms underlying variability in response to ICR blockade. Methods: We established a cohort of mice by engrafting 5-week-old C57BL/6 mice with Vκ12598 cells via tail vein injection. Treatment with αLAG3/αPD-1 or Ig-control was initiated 1-week post-engraftment and bone marrow (BM) samples were collected 3 weeks after the start of treatment. Following FACS-enrichment of T cells and plasma cells (PCs), single cell suspensions were subjected to matched single-cell gene expression (5' scRNA-seq) and T cell receptor (TCR)/B cell receptor (BCR) profiling (10x Genomics). Results: Samples were selected for profiling based on response to treatment, with responders (n=4) defined by significantly lower disease burden compared to non-responders (n=3) and control-treated mice (n=5), as measured by serum M-protein and %PCs in BM/spleen at sacrifice. Unsupervised clustering of scRNA-seq data from PCs (n=3,318 cells) identified no gene expression or BCR repertoire differences between control and treated, or between responder and non-responder samples, supporting that variability in response was not related to malignant Vκ12598 cells themselves. Across all samples, a statistically significant difference was not detected between the total number of unique TCR sequences (clonotypes) comparing control-treated (351-2369), non-responders (1185-2327) and responders (1378-1698), with no overlapping TCR sequences between top clonotypes. Evaluation of TCR repertoire diversity revealed that αLAG3/αPD-1 treatment induces clonal T cell expansion in control versus treated mice, but this was not significantly different between responders and non-responders. Analysis of paired scRNA-seq data (n=21,520 cells) revealed that expanded T cells from αLAG3/αPD-1-treated mice occupy a different cell state in responder vs. non-responder mice. We speculate that underlying differences in the TCR repertoire may dictate the downstream phenotype of expanded, anti-tumour T cells in mice treated with combinatorial αLAG3/αPD-1. Tumour control following treatment was associated with clonal expansion of T cells expressing genes related to cytoxicity and activation (Ccl5, Ifng, Fasl, Gzmb), whereas tumour progression was associated with clonal expansion of proliferative T cells (Cdkn3, Birc5, Ccna2, Aurka, Mki67). Although T cell proliferation is typically a phenotype ascribed to effector T cells, recent studies have similarly observed this proliferative cell state in dysfunctional T cells within melanoma tumours. Moreover, emerging evidence supports suppression of T cell proliferation by CDK4/6 inhibitors as a means to augment anti-tumour activity of ICR-based therapy. Thus, studies exploring whether reversal of the observed proliferative T cell state can restore response to αLAG3/αPD-1 treatment in non-responding Vκ12598 mice are ongoing and will be reported. Conclusions: ICR inhibitors demonstrate significant activity in some cancers, however many patients fail to respond and a similarly promising level of efficacy has not been achieved in MM. Studies aimed at unraveling the mechanisms of response and resistance to ICR inhibitors are therefore needed to improve the utility of this class of drugs for all patients. Our approach of using paired single-cell gene expression and TCR repertoire profiling has enabled identification of molecular cell states specifically in expanded T cells of responder vs. non-responder mice. In turn, our work nominates novel mechanisms that may be used as potential biomarkers for anti-tumour immune responses as well as potential targets to augment responses to ICR blockade therapy. Disclosures Chesi: Abcuro: Patents & Royalties: Genetically engineered mouse model of myeloma; Novartis: Consultancy, Patents & Royalties: human CRBN transgenic mouse; Pfizer: Consultancy; Pi Therapeutics: Patents & Royalties: Genetically engineered mouse model of myeloma; Palleon Pharmaceuticals: Patents & Royalties: Genetically engineered mouse model of myeloma. Bergsagel: GSK: Consultancy, Honoraria; Genetech: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Oncopeptides: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Patents & Royalties: human CRBN mouse; Pfizer: Consultancy, Honoraria; Celgene: Consultancy, Honoraria. Sebag: Janssen: Research Funding; Bristol Myers-Squibb: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Karyopharm Therapeutics: Consultancy, Honoraria. Trudel: BMS/Celgene: Consultancy, Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; GlaxoSmithKline: Consultancy, Honoraria, Research Funding; Roche: Consultancy; Sanofi: Honoraria; Pfizer: Honoraria, Research Funding; Genentech: Research Funding.


Author(s):  
Philip Ball

Today’s biotechnologies are not simply providing powerful new possibilities in medicine; they are transforming our view of what it can mean to be human. In particular, the discovery of the extreme plasticity of cells – the possibility of changing one tissue type for another, and of regenerating the embryonic cell state from which we all grew – forces us to confront our status as a contingent community of living cells, and challenges traditional notions of self and identity. Here I discuss some of these technologies and their broader social, ethical and philosophical implications.


Sign in / Sign up

Export Citation Format

Share Document