scholarly journals Decision letter: Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin

2019 ◽  
Author(s):  
Marc Lipsitch
2019 ◽  
Author(s):  
Juhye M. Lee ◽  
Rachel Eguia ◽  
Seth J. Zost ◽  
Saket Choudhary ◽  
Patrick C. Wilson ◽  
...  

AbstractA longstanding question is how influenza evolves to escape human immunity, which is polyclonal and can target many distinct epitopes on the virus. Here we map how all amino-acid mutations to influenza’s major surface protein affect viral neutralization by polyclonal human sera. The serum of some individuals is so focused that it selects single mutations that reduce viral neutralization by over an order of magnitude. However, different viral mutations escape the sera of different individuals. This individual-to-individual variation in viral escape mutations isnotpresent among ferrets, which are frequently used as a model in influenza studies. Our results show how different single mutations help influenza escape the immunity of different members of the human population, a phenomenon that could shape viral evolution and disease susceptibility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Allen ◽  
Ted M. Ross

AbstractWhile vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.


Science ◽  
2021 ◽  
Vol 371 (6526) ◽  
pp. 284-288 ◽  
Author(s):  
Brian Hie ◽  
Ellen D. Zhong ◽  
Bonnie Berger ◽  
Bryan Bryson

The ability for viruses to mutate and evade the human immune system and cause infection, called viral escape, remains an obstacle to antiviral and vaccine development. Understanding the complex rules that govern escape could inform therapeutic design. We modeled viral escape with machine learning algorithms originally developed for human natural language. We identified escape mutations as those that preserve viral infectivity but cause a virus to look different to the immune system, akin to word changes that preserve a sentence’s grammaticality but change its meaning. With this approach, language models of influenza hemagglutinin, HIV-1 envelope glycoprotein (HIV Env), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike viral proteins can accurately predict structural escape patterns using sequence data alone. Our study represents a promising conceptual bridge between natural language and viral evolution.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Chao-Ping Tung ◽  
Ing-Chien Chen ◽  
Chung-Ming Yu ◽  
Hung-Pin Peng ◽  
Jhih-Wei Jian ◽  
...  

2012 ◽  
Vol 18 (S2) ◽  
pp. 54-55
Author(s):  
K.K. Lee ◽  
L. Gui ◽  
J. Ebner

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


1986 ◽  
Vol 16 (12) ◽  
pp. 1479-1487 ◽  
Author(s):  
Barbara E. H. Coupar ◽  
Marion E. Andrew ◽  
Gerald W. Both ◽  
David B. Boyle

Sign in / Sign up

Export Citation Format

Share Document