scholarly journals Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin

2019 ◽  
Author(s):  
Juhye M. Lee ◽  
Rachel Eguia ◽  
Seth J. Zost ◽  
Saket Choudhary ◽  
Patrick C. Wilson ◽  
...  

AbstractA longstanding question is how influenza evolves to escape human immunity, which is polyclonal and can target many distinct epitopes on the virus. Here we map how all amino-acid mutations to influenza’s major surface protein affect viral neutralization by polyclonal human sera. The serum of some individuals is so focused that it selects single mutations that reduce viral neutralization by over an order of magnitude. However, different viral mutations escape the sera of different individuals. This individual-to-individual variation in viral escape mutations isnotpresent among ferrets, which are frequently used as a model in influenza studies. Our results show how different single mutations help influenza escape the immunity of different members of the human population, a phenomenon that could shape viral evolution and disease susceptibility.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Juhye M Lee ◽  
Rachel Eguia ◽  
Seth J Zost ◽  
Saket Choudhary ◽  
Patrick C Wilson ◽  
...  

A longstanding question is how influenza virus evolves to escape human immunity, which is polyclonal and can target many distinct epitopes. Here, we map how all amino-acid mutations to influenza’s major surface protein affect viral neutralization by polyclonal human sera. The serum of some individuals is so focused that it selects single mutations that reduce viral neutralization by over an order of magnitude. However, different viral mutations escape the sera of different individuals. This individual-to-individual variation in viral escape mutations is not present among ferrets that have been infected just once with a defined viral strain. Our results show how different single mutations help influenza virus escape the immunity of different members of the human population, a phenomenon that could shape viral evolution and disease susceptibility.


Science ◽  
2021 ◽  
Vol 371 (6526) ◽  
pp. 284-288 ◽  
Author(s):  
Brian Hie ◽  
Ellen D. Zhong ◽  
Bonnie Berger ◽  
Bryan Bryson

The ability for viruses to mutate and evade the human immune system and cause infection, called viral escape, remains an obstacle to antiviral and vaccine development. Understanding the complex rules that govern escape could inform therapeutic design. We modeled viral escape with machine learning algorithms originally developed for human natural language. We identified escape mutations as those that preserve viral infectivity but cause a virus to look different to the immune system, akin to word changes that preserve a sentence’s grammaticality but change its meaning. With this approach, language models of influenza hemagglutinin, HIV-1 envelope glycoprotein (HIV Env), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike viral proteins can accurately predict structural escape patterns using sequence data alone. Our study represents a promising conceptual bridge between natural language and viral evolution.


2020 ◽  
Author(s):  
Adam S. Dingens ◽  
Payal Pratap ◽  
Keara Malone ◽  
Sarah K. Hilton ◽  
Thomas Ketas ◽  
...  

AbstractMapping the epitope specificities of polyclonal serum is critical to rational vaccine design. However, most high-resolution mapping approaches involve isolating and characterizing individual monoclonal antibodies, which incompletely defines the full polyclonal response. Here we use two complementary approaches to directly map the specificities of the neutralizing and binding antibodies of polyclonal anti-HIV-1 sera from rabbits immunized with BG505 Env SOSIP trimers. To map the neutralizing specificity, we used mutational antigenic profiling to determine how all amino-acid mutations in Env affected viral neutralization. To map the binding specificity, we used electron microscopy polyclonal epitope mapping (EMPEM) to directly visualize the Fabs in serum bound to Env trimers. Mutational antigenic profiling showed that the dominant neutralizing specificities were the C3/V5 and/or 241/289 glycan hole epitopes, which were generally only a subset of the more diverse binding specificities mapped with EMPEM. Additional differences between binding and neutralization reflected antigenicity differences between virus and soluble Env trimer. Further, mutational antigenic profiling was able to refine epitope specificity in residue-level detail directly from sera, revealing subtle differences across rabbits. Together, mutational antigenic profiling and EMPEM allow for a holistic view of the binding and neutralizing specificity of polyclonal sera and could be used to finely evaluate and guide vaccine design.


2020 ◽  
Author(s):  
Brian Hie ◽  
Ellen Zhong ◽  
Bonnie Berger ◽  
Bryan Bryson

AbstractViral mutation that escapes from human immunity remains a major obstacle to antiviral and vaccine development. While anticipating escape could aid rational therapeutic design, the complex rules governing viral escape are challenging to model. Here, we demonstrate an unprecedented ability to predict viral escape by using machine learning algorithms originally developed to model the complexity of human natural language. Our key conceptual advance is that predicting escape requires identifying mutations that preserve viral fitness, or “grammaticality,” and also induce high antigenic change, or “semantic change.” We develop viral language models for influenza hemagglutinin, HIV Env, and SARS-CoV-2 Spike that we use to construct antigenically meaningful semantic landscapes, perform completely unsupervised prediction of escape mutants, and learn structural escape patterns from sequence alone. More profoundly, we lay a promising conceptual bridge between natural language and viral evolution.One sentence summaryNeural language models of semantic change and grammaticality enable unprecedented prediction of viral escape mutations.


2017 ◽  
Author(s):  
Michael B. Doud ◽  
Juhye M. Lee ◽  
Jesse D. Bloom

ABSTRACTInfluenza virus can completely escape most antibodies with single mutations. However, rare antibodies broadly neutralize many viral strains. It is unclear how easily influenza virus might escape such antibodies if it was under strong pressure to do so. Here we map all single amino-acid mutations that increase resistance to broad antibodies targeting an H1 hemagglutinin. Crucially, our approach not only identifies antigenic mutations but also quantifies their effect sizes. All antibodies select mutations, but the effect sizes vary widely. The virus can escape a broad antibody that targets residues in hemagglutinin’s receptor-binding site the same way it escapes narrow strain-specific antibodies: via single mutations with huge effects. In contrast, broad antibodies targeting hemagglutinin’s stalk only select mutations with small effects. Therefore, among the antibodies we have examined, breadth is an imperfect indicator of the potential for viral escape via single mutations. Broadly neutralizing antibodies targeting the H1 hemagglutinin stalk are quantifiably harder to escape than the other antibodies tested here.


2016 ◽  
Author(s):  
Michael B. Doud ◽  
Jesse D. Bloom

AbstractInfluenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We previously used high-throughput mutagenesis and deep sequencing to estimate the effects of all mutations to an H1 influenza hemagglutinin on viral replication in cell culture (Thyagarajan and Bloom, 2014); however, these measurements suffered from sub-stantial noise. Here we describe advances that greatly improve the accuracy and reproducibility of our measurements. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. However, other regions – including stalk epitopes targeted by broadly neutralizing antibodies – have a limited capacity to evolve. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution.


2016 ◽  
Author(s):  
Michael B. Doud ◽  
Scott E. Hensley ◽  
Jesse D. Bloom

AbstractIdentifying viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. Here we quantify how every amino-acid mutation to influenza hemagglutinin affects neutralization by monoclonal antibodies targeting several antigenic regions. Our approach involves creating all replication-competent protein variants of the virus, selecting these variants with antibody, and using deep sequencing to identify enriched mutations. These high-throughput measurements are predictive of the effects of individual mutations in traditional neutralization assays. At many residues, only some of the possible mutations escape from an antibody. For instance, at a single residue targeted by two different antibodies, we identify some mutations that escape both antibodies and other mutations that escape only one or the other. Therefore, our approach maps how viruses can escape antibodies with mutation-level sensitivity, and shows that only some mutations at antigenic residues actually alter antigenicity.


2020 ◽  
Vol 32 (9) ◽  
pp. 605-611 ◽  
Author(s):  
Masayuki Kuraoka ◽  
Yu Adachi ◽  
Yoshimasa Takahashi

Abstract Influenza virus constantly acquires genetic mutations/reassortment in the major surface protein, hemagglutinin (HA), resulting in the generation of strains with antigenic variations. There are, however, HA epitopes that are conserved across influenza viruses and are targeted by broadly protective antibodies. A goal for the next-generation influenza vaccines is to stimulate B-cell responses against such conserved epitopes in order to provide broad protection against divergent influenza viruses. Broadly protective B cells, however, are not easily activated by HA antigens with native structure, because the virus has multiple strategies to escape from the humoral immune responses directed to the conserved epitopes. One such strategy is to hide the conserved epitopes from the B-cell surveillance by steric hindrance. Technical advancement in the analysis of the human B-cell antigen receptor (BCR) repertoire has dissected the BCRs to HA epitopes that are hidden in the native structure but are targeted by broadly protective antibodies. We describe here the characterization and function of broadly protective antibodies and strategies that enable B cells to seek these hidden epitopes, with potential implications for the development of universal influenza vaccines.


2014 ◽  
Vol 104 (2) ◽  
pp. 195-202 ◽  
Author(s):  
A. Bordbar ◽  
S. Soleimani ◽  
F. Fardid ◽  
M.R. Zolfaghari ◽  
P. Parvizi

AbstractIndividual wild-caught sandflies from Iran were examined for infections of Wolbachia pipientis by targeting the major surface protein gene wsp of this intracellular α-proteobacterium. In total, 638 male and female sandflies were screened, of which 241 were found to be positive for one of three wsp haplotypes. Regardless of geographical origins and habitats, Phlebotomus (Phlebotomus) papatasi and other sandfly species were found to be infected with one common, widespread strain of A-group W. pipientis (Turk 54, GenBank accession EU780683; AY288297). In addition, a new A-group haplotype (Turk07, GenBank accession KC576916) was isolated from Phlebotomus (Paraphlebotomus) mongolensis and Phlebotomus (Pa.) caucasicus, and a new B-group haplotype (AZ2331, GenBank accession JX488735) was isolated from Phlebotomus (Larroussius) perfiliewi. Therefore, Wolbachia was found to occur in at least three of the incriminated vectors of zoonotic cutaneous leishmaniasis and zoonotic visceral leishmaniasis in different geographical regions of Iran. It may provide a new tool for the future control of leishmaniasis.


Sign in / Sign up

Export Citation Format

Share Document