scholarly journals Molecular determinants of large cargo transport into the nucleus

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Giulia Paci ◽  
Tiantian Zheng ◽  
Joana Caria ◽  
Anton Zilman ◽  
Edward A Lemke

Nucleocytoplasmic transport is tightly regulated by the nuclear pore complex (NPC). Among the thousands of molecules that cross the NPC, even very large (>15 nm) cargoes such as pathogens, mRNAs and pre-ribosomes can pass the NPC intact. For these cargoes, there is little quantitative understanding of the requirements for their nuclear import, especially the role of multivalent binding to transport receptors via nuclear localisation sequences (NLSs) and the effect of size on import efficiency. Here, we assayed nuclear import kinetics of 30 large cargo models based on four capsid-like particles in the size range of 17–36 nm, with tuneable numbers of up to 240 NLSs. We show that the requirements for nuclear transport can be recapitulated by a simple two-parameter biophysical model that correlates the import flux with the energetics of large cargo transport through the NPC. Together, our results reveal key molecular determinants of large cargo import in cells.

2019 ◽  
Author(s):  
Giulia Paci ◽  
Edward A Lemke

AbstractTransport of molecules between the nucleus and the cytoplasm is tightly regulated by the nuclear pore complex (NPC). Even very large cargoes such as many pathogens, mRNAs and pre-ribosomal subunits can pass the NPC intact. Compared to small import complexes, for such large cargoes >15 nm there is very little quantitative understanding of the mechanism for efficient transport, the role of multivalent binding to nuclear transport receptors via nuclear localisation sequences (NLSs) and effects of size differences. Here, we assayed nuclear import kinetics in cells for a total of 30 large cargo models based on four capsid-like particles in the size range of 17-36 nm, with tuneable numbers of up to 240 NLSs. We show that the requirements for transport scale non-linearly with size and obey a minimal cut off of functional import requiring more than 10 NLS in the lowest case. Together, our results reveal the key molecular determinants on large cargo import kinetics in cells.


2021 ◽  
Vol 134 (2) ◽  
pp. jcs247874
Author(s):  
Giulia Paci ◽  
Joana Caria ◽  
Edward A. Lemke

ABSTRACTBidirectional transport of macromolecules across the nuclear envelope is a hallmark of eukaryotic cells, in which the genetic material is compartmentalized inside the nucleus. The nuclear pore complex (NPC) is the major gateway to the nucleus and it regulates nucleocytoplasmic transport, which is key to processes including transcriptional regulation and cell cycle control. Accordingly, components of the nuclear transport machinery are often found to be dysregulated or hijacked in diseases. In this Cell Science at a Glance article and accompanying poster, we provide an overview of our current understanding of cargo transport through the NPC, from the basic transport signals and machinery to more emerging aspects, all from a ‘cargo perspective’. Among these, we discuss the transport of large cargoes (>15 nm), as well as the roles of different cargo properties to nuclear transport, from size and number of bound nuclear transport receptors (NTRs), to surface and mechanical properties.


2009 ◽  
Vol 185 (3) ◽  
pp. 475-491 ◽  
Author(s):  
Evgeny Onischenko ◽  
Leslie H. Stanton ◽  
Alexis S. Madrid ◽  
Thomas Kieselbach ◽  
Karsten Weis

The nuclear pore complex (NPC) mediates all nucleocytoplasmic transport, yet its structure and biogenesis remain poorly understood. In this study, we have functionally characterized interaction partners of the yeast transmembrane nucleoporin Ndc1. Ndc1 forms a distinct complex with the transmembrane proteins Pom152 and Pom34 and two alternative complexes with the soluble nucleoporins Nup53 and Nup59, which in turn bind to Nup170 and Nup157. The transmembrane and soluble Ndc1-binding partners have redundant functions at the NPC, and disruption of both groups of interactions causes defects in Ndc1 targeting and in NPC structure accompanied by significant pore dilation. Using photoconvertible fluorescent protein fusions, we further show that the depletion of Pom34 in cells that lack NUP53 and NUP59 blocks new NPC assembly and leads to the reversible accumulation of newly made nucleoporins in cytoplasmic foci. Therefore, Ndc1 together with its interaction partners are collectively essential for the biosynthesis and structural integrity of yeast NPCs.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Andrei Vovk ◽  
Chad Gu ◽  
Michael G Opferman ◽  
Larisa E Kapinos ◽  
Roderick YH Lim ◽  
...  

Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function.


2020 ◽  
Author(s):  
Tae Yeon Yoo ◽  
Timothy J Mitchison

AbstractMacromolecular transport across the nuclear envelope depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains a permeability barrier made of phenylalanine-glycine (FG) repeat domains that selectively facilitates the permeation of cargoes bound to nuclear transport receptors (NTRs). FG repeats in NPC are a major site of O-linked N-acetylglucosamine (O-GlcNAc) modification, but the functional role of this modification in nucleocytoplasmic transport is unclear. We developed high-throughput assays based on optogenetic probes to quantify the kinetics of nuclear import and export in living human cells. We found that increasing O-GlcNAc modification of the NPC accelerated NTR-facilitated nucleocytoplasmic transport of proteins in both directions, and decreasing modification slowed transport. Super-resolution imaging revealed strong enrichment of O-GlcNAc at the FG-repeat barrier. O-GlcNAc modification also accelerated passive permeation of a small, inert protein through NPCs. We conclude that O-GlcNAc modification accelerates nucleocytoplasmic transport by enhancing the non-specific permeability the FG-repeat barrier, perhaps by steric inhibition of interactions between FG repeats.SummaryNuclear pore complexes mediate nuclear transport and are highly modified with O-linked N-acetylglucosamine (O-GlcNAc) on FG repeat domains. Using a new quantitative live-cell imaging assay, Yoo and Mitchison demonstrate acceleration of nuclear import and export by O-GlcNAc modification.


1986 ◽  
Vol 102 (3) ◽  
pp. 859-862 ◽  
Author(s):  
M Schindler ◽  
L W Jiang

Fluorescence redistribution after photobleaching (FRAP) was used to examine the role of actin and myosin in the transport of dextrans through the nuclear pore complex. Anti-actin antibodies added to isolated rat liver nuclei significantly reduced the flux rate of fluorescently labeled 64-kD dextrans. The addition of 3 mM ATP to nuclei, which enhances the flux rate in control nuclei by approximately 250%, had no enhancement effect in the presence of either anti-actin or anti-myosin antibody. Phalloidin (10 microM) and cytochalasin D (1 micrograms/ml) individually inhibited the ATP stimulation of transport. Rabbit serum, anti-fibronectin, and anti-lamins A and C antibodies had no effect on transport. These results suggest a model for nuclear transport in which actin/myosin are involved in an ATP-dependent process that alters the effective transport rate across the nuclear pore complex.


2010 ◽  
Vol 38 (1) ◽  
pp. 273-277 ◽  
Author(s):  
Jindriska Fiserova ◽  
Martin W. Goldberg

Eukaryotic cells have developed a series of highly controlled processes of transport between the nucleus and cytoplasm. The present review focuses on the latest advances in our understanding of nucleocytoplasmic exchange of molecules in yeast, a widely studied model organism in the field. It concentrates on the role of individual proteins such as nucleoporins and karyopherins in the translocation process and relates this to how the organization of the nuclear pore complex effectively facilitates the bidirectional transport between the two compartments.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lindsey R Hayes ◽  
Lauren Duan ◽  
Kelly Bowen ◽  
Petr Kalab ◽  
Jeffrey D Rothstein

Disruption of nucleocytoplasmic transport is increasingly implicated in the pathogenesis of neurodegenerative diseases, including ALS caused by a C9orf72 hexanucleotide repeat expansion. However, the mechanism(s) remain unclear. Karyopherins, including importin β and its cargo adaptors, have been shown to co-precipitate with the C9orf72 arginine-containing dipeptide repeat proteins (R-DPRs), poly-glycine arginine (GR) and poly-proline arginine (PR), and are protective in genetic modifier screens. Here, we show that R-DPRs interact with importin β, disrupt its cargo loading, and inhibit nuclear import of importin β, importin α/β, and transportin cargoes in permeabilized mouse neurons and HeLa cells, in a manner that can be rescued by RNA. Although R-DPRs induce widespread protein aggregation in this in vitro system, transport disruption is not due to nucleocytoplasmic transport protein sequestration, nor blockade of the phenylalanine-glycine (FG)-rich nuclear pore complex. Our results support a model in which R-DPRs interfere with cargo loading on karyopherins.


2021 ◽  
Author(s):  
Ali Imran ◽  
Brandon S. Moyer ◽  
Ashley J. Canning ◽  
Dan Kalina ◽  
Thomas M Duncan ◽  
...  

Recent advances in quantitative proteomics show that WD40 proteins play a pivotal role in numerous cellular networks. Yet, they have been fairly unexplored and their physical associations with other proteins are ambiguous. A quantitative understanding of these interactions has wide-ranging significance. WD40 repeat protein 5 (WDR5) interacts with all members of human SET1/MLL methyltransferases, which regulate methylation of the histone 3 lysine 4 (H3K4). Here, using real-time binding measurements in a high-throughput setting, we identified the kinetic fingerprint of  transient associations between WDR5 and 14-residue WDR5 interaction (Win) motif peptides of each SET1 protein (SET1Win). Our results reveal that the high-affinity WDR5-SET1Win interactions feature slow association kinetics. This finding is likely due to the requirement of SET1Win to insert into the narrow WDR5 cavity, also named the Win binding site. Furthermore, our explorations indicate fairly slow dissociation kinetics. This conclusion is in accordance with the primary role of WDR5 in maintaining the functional integrity of a large multisubunit complex, which regulates the histone methylation. Because the Win binding site is considered a key therapeutic target, the immediate outcomes of this study could form the basis for accelerated developments in medical biotechnology.


2002 ◽  
Vol 115 (14) ◽  
pp. 2997-3005
Author(s):  
Carl Feldherr ◽  
Debra Akin ◽  
Trevor Littlewood ◽  
Murray Stewart

In this report we investigated the activity of vertebrate nuclear transport factors in a primitive organism, Amoeba proteus, to better understand evolutionary changes in the transport mechanisms of organisms expected to have different requirements for nucleocytoplasmic exchange. It was initially determined that FxFG-containing nucleoporins and Ran, both of which are essential for nuclear import in vertebrates, as well as yeast, are also present and functional in amoebae. This suggests that there are fundamental similarities in the transport process; however, there are also significant differences. Transport substrates containing either the hnRNP A1 M9 shuttling signal (a GST/GFP/M9 fusion protein) or the classical bipartite NLS (colloidal gold coated with BSA-bipartite NLS conjugates), both of which are effectively transported in vertebrate cells, are excluded from the nucleus when microinjected into amoebae. However, when these substrates are injected along with transportin or importin α/β, respectively, the vertebrate receptors for these signals, they readily accumulate in the nucleoplasm. These results indicate that although the molecular recognition of substrates is not well conserved between vertebrates and amoebae, vertebrate transport receptors are functional in A. proteus, showing that the translocation machinery is highly conserved. Since selected nuclear import pathways can be investigated in the absence of competing endogenous transport, A. proteus might provide a useful in vivo system for investigating specific molecular interactions involved in trafficking.


Sign in / Sign up

Export Citation Format

Share Document