scholarly journals Amplitude modulations of cortical sensory responses in pulsatile evidence accumulation

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Sue Ann Koay ◽  
Stephan Thiberge ◽  
Carlos D Brody ◽  
David W Tank

How does the brain internally represent a sequence of sensory information that jointly drives a decision-making behavior? Studies of perceptual decision-making have often assumed that sensory cortices provide noisy but otherwise veridical sensory inputs to downstream processes that accumulate and drive decisions. However, sensory processing in even the earliest sensory cortices can be systematically modified by various external and internal contexts. We recorded from neuronal populations across posterior cortex as mice performed a navigational decision-making task based on accumulating randomly timed pulses of visual evidence. Even in V1, only a small fraction of active neurons had sensory-like responses time-locked to each pulse. Here we focus on how these 'cue-locked' neurons exhibited a variety of amplitude modulations from sensory to cognitive, notably by choice and accumulated evidence. These task-related modulations affected a large fraction of cue-locked neurons across posterior cortex, suggesting that future models of behavior should account for such influences.

2017 ◽  
Author(s):  
S. Shushruth ◽  
Mark Mazurek ◽  
Michael N. Shadlen

ABSTRACTNeurons in the lateral intraparietal area (LIP) of Macaques exhibit both sensory and oculomotor preparatory responses. During perceptual decision making, the preparatory responses have been shown to track the state of the evolving evidence leading to the decision. The sensory responses are known to reflect categorical properties of visual stimuli, but it is not known if these responses also track evolving evidence. We compared sensory and oculomotor-preparatory responses in the same neurons during a direction discrimination task when either the discriminandum (random dot motion) or an eye movement choice-target was in the neuron’s response field. Both configurations elicited task related activity, but only the motor preparatory responses reflected evidence accumulation. The results are consistent with the proposal that evolving decision processes are supported by persistent neural activity in the service of actions or intentions, as opposed to high order representations of stimulus properties.SIGNIFICANCE STATEMENTPerceptual decision making is the process of choosing an appropriate motor action based on perceived sensory information. Association areas of the cortex play an important role in this sensory-motor transformation. The neurons in these areas show both sensory- and motor-related activity. We show here that, in the macaque parietal association area LIP, signatures of the process of evidence accumulation that underlies the decisions are predominantly reflected in the motor-related activity. This finding supports the proposal that perceptual decision making is implemented in the brain as a process of choosing between available motor actions rather than as a process of representing the properties of the sensory stimulus.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


2020 ◽  
Author(s):  
Donatas Jonikaitis ◽  
Nir Nissim ◽  
Ruobing Xia ◽  
Tirin Moore

AbstractIt is widely known that neural activity in sensory representations is modulated by cognitive factors such as attention, reward value and working memory. In such cases, sensory responses are found to reflect a selection of the specific sensory information needed to achieve behavioral goals. In contrast, more abstract behavioral constraints that do not involve stimulus selection, such as task rules, are thought to be encoded by neurons at later stages. We show that information about abstract rules is encoded by neurons in primate visual cortex in the absence of sensory stimulation. Furthermore, we show that rule information is greatest among neurons with the least visual activity and the weakest coupling to local neuronal networks. Our results identify rule-specific signals within a sensory representation and suggest that distinct mechanisms exist there for mapping rule information onto sensory guided decisions.


2016 ◽  
Vol 115 (2) ◽  
pp. 915-930 ◽  
Author(s):  
Matthew A. Carland ◽  
Encarni Marcos ◽  
David Thura ◽  
Paul Cisek

Perceptual decision making is often modeled as perfect integration of sequential sensory samples until the accumulated total reaches a fixed decision bound. In that view, the buildup of neural activity during perceptual decision making is attributed to temporal integration. However, an alternative explanation is that sensory estimates are computed quickly with a low-pass filter and combined with a growing signal reflecting the urgency to respond and it is the latter that is primarily responsible for neural activity buildup. These models are difficult to distinguish empirically because they make similar predictions for tasks in which sensory information is constant within a trial, as in most previous studies. Here we presented subjects with a variant of the classic constant-coherence motion discrimination (CMD) task in which we inserted brief motion pulses. We examined the effect of these pulses on reaction times (RTs) in two conditions: 1) when the CMD trials were blocked and subjects responded quickly and 2) when the same CMD trials were interleaved among trials of a variable-motion coherence task that motivated slower decisions. In the blocked condition, early pulses had a strong effect on RTs but late pulses did not, consistent with both models. However, when subjects slowed their decision policy in the interleaved condition, later pulses now became effective while early pulses lost their efficacy. This last result contradicts models based on perfect integration of sensory evidence and implies that motion signals are processed with a strong leak, equivalent to a low-pass filter with a short time constant.


2020 ◽  
Vol 30 (10) ◽  
pp. 5471-5483
Author(s):  
Y Yau ◽  
M Dadar ◽  
M Taylor ◽  
Y Zeighami ◽  
L K Fellows ◽  
...  

Abstract Current models of decision-making assume that the brain gradually accumulates evidence and drifts toward a threshold that, once crossed, results in a choice selection. These models have been especially successful in primate research; however, transposing them to human fMRI paradigms has proved it to be challenging. Here, we exploit the face-selective visual system and test whether decoded emotional facial features from multivariate fMRI signals during a dynamic perceptual decision-making task are related to the parameters of computational models of decision-making. We show that trial-by-trial variations in the pattern of neural activity in the fusiform gyrus reflect facial emotional information and modulate drift rates during deliberation. We also observed an inverse-urgency signal based in the caudate nucleus that was independent of sensory information but appeared to slow decisions, particularly when information in the task was ambiguous. Taken together, our results characterize how decision parameters from a computational model (i.e., drift rate and urgency signal) are involved in perceptual decision-making and reflected in the activity of the human brain.


2012 ◽  
Vol 108 (2) ◽  
pp. 501-512 ◽  
Author(s):  
Atsuko Nagano-Saito ◽  
Paul Cisek ◽  
Andrea S. Perna ◽  
Fatemeh Z. Shirdel ◽  
Chawki Benkelfat ◽  
...  

During simple sensorimotor decision making, neurons in the parietal cortex extract evidence from sensory information provided by visual areas until a decision is reached. Contextual information can bias parietal activity during the task and change the decision-making parameters. One type of contextual information is the availability of reward for correct decisions. We tested the hypothesis that the frontal lobes and basal ganglia use contextual information to bias decision making to maximize reward. Human volunteers underwent functional MRI while making decisions about the motion of dots on a computer monitor. On rewarded trials, subjects responded more slowly by increasing the threshold to decision. Rewarded trials were associated with activation in the ventral striatum and prefrontal cortex in the period preceding coherent dot motion, and the degree of activation predicted the increased decision threshold. Decreasing dopamine transmission, using a tyrosine-depleting amino acid mixture, abolished the reward-related corticostriatal activation and eliminated the correlation between striatal activity and decision threshold. These observations provide direct evidence that some reward-related functional MRI signals in the striatum are the result of dopamine neuron activity and demonstrate that mesolimbic dopamine transmission can influence perceptual and decision-making neural processes engaged to maximize reward harvest.


2020 ◽  
Author(s):  
Sue Ann Koay ◽  
Stephan Y. Thiberge ◽  
Carlos D. Brody ◽  
David W. Tank

AbstractHow do animals make behavioral decisions based on noisy sensory signals, which are moreover a tiny fraction of ongoing activity in the brain? Some theories suggest that sensory responses should be accumulated through time to reduce noise. Others suggest that feedback-based gain control of sensory responses allow small signals to be selectively amplified to drive behavior. We recorded from neuronal populations across posterior cortex as mice performed a decision-making task based on accumulating randomly timed pulses of visual evidence. Here we focus on a subset of neurons, with putative sensory responses that were time-locked to each pulse. These neurons exhibited a variety of amplitude (gain-like) modulations, notably by choice and accumulated evidence. These neural data inspired a hypothetical accumulation circuit with a multiplicative feedback-loop architecture, which parsimoniously explains deviations in perceptual discrimination from Weber-Fechner Law. Our neural observations thus led to a model that synthesizes both accumulation and feedback hypotheses.


2021 ◽  
Author(s):  
Jennifer Laura Lee ◽  
Rachel N. Denison ◽  
Wei Ji Ma

Perceptual decision-making is often conceptualized as the process of comparing an internal decision variable to a categorical boundary, or criterion. How the mind sets such a criterion has been studied from at least two perspectives. First, researchers interested in consciousness have proposed that criterion-crossing determines whether a stimulus is consciously perceived. Second, researchers interested in decision-making have studied how the criterion depends on a range of stimulus and task variables. Both communities have considered the question of how the criterion behaves when sensory information is weak or uncertain. Interestingly, however, they have arrived at different conclusions. Consciousness researchers investigating a phenomenon called "subjective inflation" – a form of metacognitive mismatch in which observers overestimate the quality of their sensory representations in the periphery or at an unattended location – have proposed that the criterion governing subjective visibility is fixed. That is, it does not adjust to changes in sensory uncertainty. Decision-making researchers, on the other hand, have concluded that the criterion does adjust to account for sensory uncertainty, including under inattention. Here, we mathematically demonstrate that previous empirical findings supporting subjective inflation are consistent with either a fixed or a flexible decision criterion. We further show that specific experimental task requirements are necessary to make inferences about the flexibility of the criterion: 1) a clear mapping from decision variable space to stimulus feature space, and 2) a task incentive for observers to adjust their decision criterion as response variance increases. We conclude that the fixed-criterion model of subjective inflation requires re-thinking in light of new evidence from the probabilistic reasoning literature that decision criteria flexibly adjust according to response variance.


2016 ◽  
Author(s):  
Fred Marbach ◽  
Anthony M. Zador

AbstractPsychophysical tasks for non-human primates have been instrumental in studying circuits underlying perceptual decision-making. To obtain greater experimental flexibility, these tasks have subsequently been adapted for use in freely moving rodents. However, advances in functional imaging and genetic targeting of neuronal populations have made it critical to develop similar tasks for head-fixed mice. Although head-fixed mice have been trained in two-alternative forced choice tasks before, these tasks were not self-initiated, making it difficult to attribute error trials to perceptual or decision errors as opposed to mere lapses in task engagement. Here, we describe a paradigm for head-fixed mice with three lick spouts, analogous to the well-established 3-port paradigm for freely moving rodents. Mice readily learned to initiate trials on the center spout and performed around 200 self-initiated trials per session, reaching good psychometric performance within two weeks of training. We expect this paradigm will be useful to study the role of defined neural populations in sensory processing and decision-making.


Sign in / Sign up

Export Citation Format

Share Document