scholarly journals Unmasking coupling between channel gating and ion permeation in the muscle nicotinic receptor

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
John R Strikwerda ◽  
Steven M Sine

Whether ion channel gating is independent of ion permeation has been an enduring, unresolved question. Here, applying single channel recording to the archetypal muscle nicotinic receptor, we unmask coupling between channel gating and ion permeation by structural perturbation of a conserved intramembrane salt bridge. A charge-neutralizing mutation suppresses channel gating, reduces unitary current amplitude, and increases fluctuations of the open channel current. Power spectra of the current fluctuations exhibit low- and high-frequency Lorentzian components, which increase in charge-neutralized mutant receptors. After aligning channel openings and closings at the time of transition, the average unitary current exhibits asymmetric relaxations just after channel opening and before channel closing. A theory in which structural motions contribute jointly to channel gating and ion conduction describes both the power spectrum and the current relaxations. Coupling manifests as a transient increase in the open channel current upon channel opening and a decrease upon channel closing.

2021 ◽  
Author(s):  
Di Wu

Ion-channel functions are often studied by the current-voltage relation, which is commonly fitted by the Boltzmann equation, a powerful model widely used nowadays. However, the Boltzmann model is restricted to a two-state ion-permeation process. Here we present an improved model that comprises a flexible number of states and incorporates both the single-channel conductance and the open-channel probability. Employing the channel properties derived from the single-channel recording experiments, the proposed model is able to describe various current-voltage relations, especially the reversal ion-permeation curves showing the inward- and outward-rectifications. We demonstrate the applicability of the proposed model using the published patch-clamp data of BK and MthK potassium channels, and discuss the similarity of the two channels based on the model studies.


2000 ◽  
Vol 116 (3) ◽  
pp. 327-340 ◽  
Author(s):  
Claudio Grosman ◽  
Frank N. Salamone ◽  
Steven M. Sine ◽  
Anthony Auerbach

We describe the functional consequences of mutations in the linker between the second and third transmembrane segments (M2–M3L) of muscle acetylcholine receptors at the single-channel level. Hydrophobic mutations (Ile, Cys, and Phe) placed near the middle of the linker of the α subunit (αS269) prolong apparent openings elicited by low concentrations of acetylcholine (ACh), whereas hydrophilic mutations (Asp, Lys, and Gln) are without effect. Because the gating kinetics of the αS269I receptor (a congenital myasthenic syndrome mutant) in the presence of ACh are too fast, choline was used as the agonist. This revealed an ∼92-fold increased gating equilibrium constant, which is consistent with an ∼10-fold decreased EC50 in the presence of ACh. With choline, this mutation accelerates channel opening ∼28-fold, slows channel closing ∼3-fold, but does not affect agonist binding to the closed state. These ratios suggest that, with ACh, αS269I acetylcholine receptors open at a rate of ∼1.4 × 106 s−1 and close at a rate of ∼760 s−1. These gating rate constants, together with the measured duration of apparent openings at low ACh concentrations, further suggest that ACh dissociates from the diliganded open receptor at a rate of ∼140 s−1. Ile mutations at positions flanking αS269 impair, rather than enhance, channel gating. Inserting or deleting one residue from this linker in the α subunit increased and decreased, respectively, the apparent open time approximately twofold. Contrary to the αS269I mutation, Ile mutations at equivalent positions of the β, ε, and δ subunits do not affect apparent open-channel lifetimes. However, in β and ε, shifting the mutation one residue to the NH2-terminal end enhances channel gating. The overall results indicate that this linker is a control element whose hydrophobicity determines channel gating in a position- and subunit-dependent manner. Characterization of the transition state of the gating reaction suggests that during channel opening the M2–M3L of the α subunit moves before the corresponding linkers of the β and ε subunits.


1998 ◽  
Vol 111 (4) ◽  
pp. 539-554 ◽  
Author(s):  
Fred S.P. Chen ◽  
David Fedida

4-Aminopyridine (4-AP) binds to potassium channels at a site or sites in the inner mouth of the pore and is thought to prevent channel opening. The return of hKv1.5 off-gating charge upon repolarization is accelerated by 4-AP and it has been suggested that 4-AP blocks slow conformational rearrangements during late closed states that are necessary for channel opening. On the other hand, quinidine, an open channel blocker, slows the return or immobilizes off-gating charge only at opening potentials (>−25 mV). The aim of this study was to use quini-dine as a probe of open channels to test the kinetic state of 4-AP-blocked channels. In the presence of 0.2–1 mM 4-AP, quinidine slowed charge return and caused partial charge immobilization, corresponding to an increase in the Kd of ∼20-fold. Peak off-gating currents were reduced and decay was slowed ∼2- to 2.5-fold at potentials negative to the threshold of channel activation and during depolarizations shorter than normally required for channel activation. This demonstrated access of quinidine to 4-AP-blocked channels, a lack of competition between the two drugs, and implied allosteric modulation of the quinidine binding site by 4-AP resident within the channel. Single channel recordings also showed that quinidine could modulate the 4-AP-induced closure of the channels, with the result that frequent channel reopenings were observed when both drugs were present. We propose that 4-AP-blocked channels exist in a partially open, nonconducting state that allows access to quinidine, even at more negative potentials and during shorter depolarizations than those required for channel activation.


2006 ◽  
Vol 127 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Ping Zhang ◽  
Fred J. Sigworth ◽  
Cecilia M. Canessa

The acid-sensitive ion channels (ASICs) are a family of voltage-insensitive sodium channels activated by external protons. A previous study proposed that the mechanism underlying activation of ASIC consists of the removal of a Ca2+ ion from the channel pore (Immke and McCleskey, 2003). In this work we have revisited this issue by examining single channel recordings of ASIC1 from toadfish (fASIC1). We demonstrate that increases in the concentration of external protons or decreases in the concentration of external Ca2+ activate fASIC1 by progressively opening more channels and by increasing the rate of channel opening. Both maneuvers produced similar effects in channel kinetics, consistent with the former notion that protons displace a Ca2+ ion from a high-affinity binding site. However, we did not observe any of the predictions expected from the release of an open-channel blocker: decrease in the amplitude of the unitary currents, shortening of the mean open time, or a constant delay for the first opening when the concentration of external Ca2+ was decreased. Together, the results favor changes in allosteric conformations rather than unblocking of the pore as the mechanism gating fASIC1. At high concentrations, Ca2+ has an additional effect that consists of voltage-dependent decrease in the amplitude of unitary currents (EC50 of 10 mM at −60 mV and pH 6.0). This phenomenon is consistent with voltage-dependent block of the pore but it occurs at concentrations much higher than those required for gating.


1994 ◽  
Vol 104 (5) ◽  
pp. 857-883 ◽  
Author(s):  
A H Hainsworth ◽  
R A Levis ◽  
R S Eisenberg

Open-channel noise was studied in the large potassium channel of the sarcoplasmic reticulum (SR). Inside-out patches were excised directly from the SR of split skeletal muscle fibers of lobster, with lobster relaxing ringer (LRR) in bath and pipette. The power spectrum of open-channel noise is very low and approximately flat in the 100 Hz-10 kHz frequency range. At 20 degrees C, with an applied voltage of 50 mV, the mean single-channel current (i) is 9 pA (mean single-channel conductance = 180 pS) and the mean power spectral density 1.1 x 10(-29) A2/Hz. The latter increases nonlinearly with (i), showing a progressively steeper dependence as (i) increases. At 20 mV, the mean power spectral density is almost independent of (i) and approximately 1.4 times that of the Johnson noise calculated for the equivalent ideal resistor with zero net current; at 70 mV it increases approximately in proportion to (i)2. The mean power spectral density has a weak temperature dependence, very similar to that of (i), and both are well described by a Q10 of 1.3 throughout the range 3-40 degrees C. Discrete ion transport events are thought to account for a significant fraction of the measured open-channel noise, probably approximately 30-50% at 50 mV. Brief interruptions of the single-channel current, due either to blockage of the open channel by an extrinsic aqueous species, or to intrinsic conformational changes in the channel molecule itself, were a possible additional source of open-channel noise. Experiments in modified bathing solutions indicate, however, that open-channel noise is not affected by any of the identified aqueous species present in LRR. In particular, magnesium ions, the species thought most likely to cause brief blockages, and calcium and hydrogen ions, have no detectable effect. This channel's openings exhibit many brief closings and substrates, due to intrinsic gating of the channel. Unresolved brief full closings are calculated to make a negligible contribution (< 1%) to the measured power spectral density. The only significant source of noise due to band width-limited missed events is brief, frequent 80% substrates (mean duration 20 microseconds, mean frequency 1,000 s-1) which account for a small part of the measured power spectral density (approximately 14%, at 50 mV, 20 degrees C). We conclude that a large fraction of the measured open-channel noise results from intrinsic conductance fluctuations, with a corner frequency higher than the resolution of our recordings, in the range 10(4)-10(7) Hz.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 268 (3) ◽  
pp. F480-F489 ◽  
Author(s):  
G. Frindt ◽  
R. B. Silver ◽  
E. E. Windhager ◽  
L. G. Palmer

The effects of exogenous adenosine 3',5'-cyclic monophosphate (cAMP) on apical Na channels in the rat cortical collecting tubule were studied using the patch-clamp technique and fura 2 fluorescence measurements of intracellular Ca2+ (Ca2+i). When the permeant analogue, 8-(4-chlorophenylthio)-cAMP (CPT-cAMP, 200 microM), was added to the superfusate during recording from cell-attached patches, both the mean number of open channels (NPo) and the single-channel current (i) decreased within 3 min. When the superfusate also contained amiloride (10 microM), there was no effect of CPT-cAMP on either NPo or i. When CPT-cAMP was added to the bath before formation of the patch, the density of conducting channels was increased from 10 +/- 2 to 37 +/- 6 per patch, as estimated by analysis of channel-induced noise. This suggests that cAMP increases open-channel density in the regions of the apical membrane outside the patch but not within the patch. Channels already active in the patch before stimulation with the nucleotide are subject to feedback inhibition secondary to increased Na entry into the cell. CPT-cAMP increased Ca2+i from 104 to 198 nM. This increase in Ca2+i was abolished by benzamil (0.5 microM) or by low extracellular Ca2+. The cAMP-dependent reduction in NPo was still observed in Ca(2+)-free medium, indicating that a rise in Ca2+i was not essential for the feedback response. The decrease in NPo was attenuated, however, when cAMP was added in the absence of Ca2+ and in the presence of ouabain (1 mM) in the superfusate.(ABSTRACT TRUNCATED AT 250 WORDS)


2013 ◽  
Vol 305 (8) ◽  
pp. C817-C828 ◽  
Author(s):  
Zhiwei Cai ◽  
Hongyu Li ◽  
Jeng-Haur Chen ◽  
David N. Sheppard

The chemical structures of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) resemble those of small-molecules that inhibit the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. We therefore tested the acute effects of T3, T4 and reverse T3 (rT3) on recombinant wild-type human CFTR using the patch-clamp technique. When added directly to the intracellular solution bathing excised membrane patches, T3, T4, and rT3 (all tested at 50 μM) inhibited CFTR in several ways: they strongly reduced CFTR open probability by impeding channel opening; they moderately decreased single-channel current amplitude, and they promoted transitions to subconductance states. To investigate the mechanism of CFTR inhibition, we studied T3. T3 (50 μM) had multiple effects on CFTR gating kinetics, suggestive of both allosteric inhibition and open-channel blockade. Channel inhibition by T3 was weakly voltage dependent and stronger than the allosteric inhibitor genistein, but weaker than the open-channel blocker glibenclamide. Raising the intracellular ATP concentration abrogated T3 inhibition of CFTR gating, but not the reduction in single-channel current amplitude nor the transitions to subconductance states. The decrease in single-channel current amplitude was relieved by membrane depolarization, but not the transitions to subconductance states. We conclude that T3 has complex effects on CFTR consistent with both allosteric inhibition and open-channel blockade. Our results suggest that there are multiple allosteric mechanisms of CFTR inhibition, including interference with ATP-dependent channel gating and obstruction of conformational changes that gate the CFTR pore. CFTR inhibition by thyroid hormones has implications for the development of innovative small-molecule CFTR inhibitors.


1996 ◽  
Vol 107 (3) ◽  
pp. 433-443 ◽  
Author(s):  
B D Winegar ◽  
C M Haws ◽  
J B Lansman

The activity of single mechanosensitive channels was recorded from cell-attached patches on acutely isolated skeletal muscle fibers from the mouse. The experiments were designed to investigate the mechanism of channel block produced by externally applied aminoglycoside antibiotics. Neomycin and other aminoglycosides reduced the amplitude of the single-channel current at negative membrane potentials. The block was concentration-dependent, with a half-maximal concentration of approximately 200 microM. At high drug concentrations, however, block was incomplete with roughly one third of the current remaining unblocked. Neomycin also caused the channel to fluctuate between the open state and a subconductance level that was also roughly one third the amplitude of the fully open level. An analysis of the kinetics of the subconductance fluctuations was consistent with a bimolecular reaction between an aminoglycoside molecule and the open channel (kon = approximately 1 x 10(6) M-1s-1 and koff = approximately 400 s-1 at -60 mV). Increasing the external pH reduced both the rapid block of the open channel and the frequency of the subconductance fluctuations, as if both blocking actions were produced by a single active drug species with a pKa = approximately 7.5. The results are interpreted in terms of a mechanism in which an aminoglycoside molecule partially occludes ion flow through the channel pore.


Sign in / Sign up

Export Citation Format

Share Document