scholarly journals Experimental log hauling through a traditional caribou wintering area

Rangifer ◽  
1998 ◽  
Vol 18 (5) ◽  
pp. 241 ◽  
Author(s):  
Harold G. Cumming ◽  
Bruce T. Hyer

A 3-year field experiment (fall 1990-spring 1993) showed that woodland caribou (Rangifer tarandus caribou) altered their dispersion when logs were hauled through their traditional wintering area. Unlike observations in control years 1 and 3, radio-collared caribou that had returned to the study area before the road was plowed on January 6 of the experimental year 2, moved away 8-60 km after logging activities began. Seasonal migration to Lake Nipigon islands usually peaked in April, but by February 22 of year 2, 4 of the 6 had returned. The islands provide summer refuge from predation, but not when the lake is frozen. Tracks in snow showed that some caribou remained but changed locations. They used areas near the road preferentially in year 1, early year 2, and year 3, but moved away 2-5 km after the road was plowed in year 2. In a nearby undisturbed control area, no such changes occurred. Caribou and moose partitioned habitat on a small scale; tracks showed gray wolf (Canis lupus) remote from caribou but close to moose tracks. No predation on caribou was observed within the wintering area; 2 kills were found outside it. Due to the possibility of displacing caribou from winter refugia to places with higher predation risk, log hauling through important caribou winter habitat should be minimized.

Rangifer ◽  
1996 ◽  
Vol 16 (4) ◽  
pp. 171 ◽  
Author(s):  
H.G. Cumming

Forest management guidelines for woodland caribou (Rangifer tarandus caribou) in Ontario need to be re-examined in light of the finding that caribou partition habitat with moose (Alces alces), partly to find virtual refuges from predation by gray wolves (Canis lupus). Forest-wide guidelines seem inappropriate for a species that is widely scattered and little known. Management should concentrate on and around currently used virtual refuges to ensure their continued habitability. Cutting these areas may force the caribou into places with higher densities of predators; winter use of roads might bring poachers, increased wolf entry, and accidents. A proposal for 100 km2 clear-cuts scheduled over 60+ years across the forest landscape would probably minimize moose/wolf densities in the long run as intended, but because of habitat partitioning might forfeit any benefits to caribou in the short-term. Sharply reducing moose densities near areas where caribou have sought refuge might incline wolves to switch to caribou. Cutting beyond caribou winter refuge areas should aim at maintaining current moose densities to prevent wolves from switching prey species. Operations level manipulation of the forest around each wintering area should provide winter habitat for the future, while treatment replications with controls across the whole forest would provide reliable knowledge about which approaches work best. The remainder of the forest should be managed to maintain suitable densities of all other species.


2006 ◽  
Vol 120 (3) ◽  
pp. 313 ◽  
Author(s):  
Gerald W. Kuzyk ◽  
Jeff Kneteman ◽  
Fiona K. A. Schmiegelow

We studied pack size of Wolves (Canis lupus) on Woodland Caribou (Rangifer tarandus caribou) winter ranges in westcentral Alberta. These Caribou winter ranges are experiencing increasing pressure from resource extraction industries (forestry, energy sector) and concerns have been raised regarding increased Wolf predation pressure on Caribou in conjunction with landscape change. Thirty-one Wolves, from eight Wolf packs, were fitted with radiocollars on two Caribou winter ranges in the Rocky Mountain foothills, near Grande Cache, Alberta (2000-2001). There was a mean of 8.2 Wolves/pack and between 30 and 39 Wolves on each of the RedRock/Prairie Creek and Little Smoky Caribou ranges. The average pack size of Wolves in this region does not appear to have increased over that recorded historically, but the range (5-18) in the number of Wolves per pack varied considerably over our study area. Wolves preyed predominately on Moose (Alces alces), averaging one Moose kill every three to five days. There was some indication that pack size was related to prey size, with the smallest pack preying on Deer (Odocoileus spp.). It was clear that Caribou could not be the primary prey for Wolves, due to their low numbers, and relative to the pack size and Wolf kills we observed.


2014 ◽  
Vol 92 (12) ◽  
pp. 1029-1037 ◽  
Author(s):  
Dave Hervieux ◽  
Mark Hebblewhite ◽  
Dave Stepnisky ◽  
Michelle Bacon ◽  
Stan Boutin

Across Canada, woodland caribou (Rangifer tarandus caribou (Gmelin, 1788)) populations are declining because of human-induced changes to food webs that are resulting in apparent competition-induced increases in predator-caused caribou mortality. We tested the hypothesis that wolf (Canis lupus L., 1758) population reduction could reverse declines in a woodland caribou population following a BACI (before-after-control-impact) design conducted over a 12-year period in west-central Alberta, Canada. We monitored annual survival for 172 adult female caribou and calf recruitment from 2000 through 2012 and conducted a provincial government delivered wolf population reduction program annually during the winters of 2005–2006 to 2012 (inclusive) in an area centered on the Little Smoky range. Wolf removal translated to a 4.6% increase in mean population growth rate of the Little Smoky population mostly through improvements in calf recruitment. In contrast, the Red Rock Prairie Creek control population exhibited a 4.7% decline. Although the wolf population reduction program appeared to stabilize the Little Smoky population, it did not lead to population increase, however, with λ remaining approximately equal to 1. Therefore, we recommend, if required, predation management be combined with effective habitat conservation and long-term planning to effect the recovery of species, such as woodland caribou, which are declining as a result of habitat-mediated apparent competition.


2017 ◽  
Vol 93 (03) ◽  
pp. 204-212 ◽  
Author(s):  
Sean B. Rapai ◽  
Duncan McColl ◽  
Richard Troy McMullin

The development of habitat restoration techniques for restoring critical woodland caribou (Rangifer tarandus caribou) winter habitat will play an important role in meeting the management thresholds in woodland caribou recovery plans. The goal is to restore disturbed environments within critical winter habitat for the declining woodland caribou. Woodland caribou are diet specialists, utilizing lichen-rich habitat for forage during winter months. Cladonia sub-genus Cladina is the most frequently eaten species during this time. Herein, we provide: 1) A review of previously used methods for transplanting Cladonia sub-genus Cladina and their feasibility in restoring woodland caribou winter habitat; 2) A stepby- step protocol on how to carry out a terrestrial lichen transplant program (using Cladonia sub-genus Cladina and C. uncialis); and, 3) An evaluation of our protocol through the establishment of a case study in northern British Columbia. Our results indicate that transplanting C. sub-genus Cladina fragments is the most efficient technique for transplanting terrestrial lichen communities, but transplanting lichen ‘patches’ or ‘mats’ may also be effective.


2015 ◽  
Vol 93 (3) ◽  
pp. 245-247 ◽  
Author(s):  
Dave Hervieux ◽  
Mark Hebblewhite ◽  
Dave Stepnisky ◽  
Michelle Bacon ◽  
Stan Boutin

Managing predators to restore threatened or endangered species is often controversial. Hervieux et al. (2014; Can. J. Zool. 92(12): 1029–1037) report on the efficacy of wolf (Canis lupus L., 1758) reduction as a recovery strategy in the Little Smoky population of boreal woodland caribou (Rangifer tarandus caribou (Gmelin, 1788)) range in Alberta, which generated a lot of media attention. As such, the authors were invited by the journal editor who handled the original paper to write this addendum to provide clarification regarding the methodology used in the original paper. Wolf reduction was conducted by Government personnel in accordance with appropriate policy and laws (i.e., federal and provincial Species at Risk Acts; Alberta Wildlife Act; Alberta Woodland Caribou Policy). University-based researchers were involved only in data analysis and writing, and thus did not require approval by a university-based animal welfare board. Collaboration between independent university-based scientists and government biologists is essential to effective assessment of such controversial management practices. Hervieux et al. (2014; Can. J. Zool. 92(12): 1029–1037) in fact concluded that such wolf reductions, by themselves, would only “buy time” and would not restore woodland caribou alone without effective habitat protection.


2010 ◽  
Vol 124 (3) ◽  
pp. 270
Author(s):  
Brian W. Kiss ◽  
Scott K. Johnstone ◽  
Robert P. Berger

A single Gray Wolf (Canis lupus) was observed successfully trapping and predating a Barren-ground Caribou (Rangifer tarandus groenlandicus) in a small section of open water.


2003 ◽  
Vol 117 (3) ◽  
pp. 352 ◽  
Author(s):  
Trevor A. Kinley ◽  
John Bergenske ◽  
Julie-Anne Davies ◽  
David Quinn

Mountain Caribou are a rare ecotype of Woodland Caribou (Rangifer tarandus caribou) inhabiting the high-snowfall region of southeastern British Columbia, and are defined by their late-winter reliance on arboreal hair lichen of the genus Bryoria. During early winter, there is considerable variation in habitat use among populations. We snow-trailed Caribou in the southern Purcell Mountains during early winter to determine foraging patterns for the Purcell population. When snow was ≤51 cm deep, Caribou fed on Grouseberry (Vaccinium scoparium), the terrestrial lichen Cladonia, and arboreal lichens of the genus Bryoria. When snow was ≥62 cm deep, they ate exclusively arboreal lichens. In both periods, Caribou ate arboreal lichen from essentially every downed tree or branch encountered and fed with a higher intensity at downed trees than standing trees. During the low-snow period, Caribou fed at fewer trees but used those with greater lichen abundance, and fed more intensively at each, compared to the deep-snow period. In comparison to trees occurring on the foraging path but at which Caribou did not feed, those from which arboreal lichen was foraged intensively were of larger diameter, had greater lichen abundance, and were more likely to be Subalpine Fir (Abies lasiocarpa) or Engelmann Spruce (Picea engelmannii) and less likely to be Whitebark Pine (Pinus albicaulis), Lodgepole Pine (P. contorta) or Alpine Larch (Larix lyalli). The shift in diet between the low-snow and deep-snow periods reflected two modes of foraging within the early winter period, distinct from one another and apparently also distinct from the late-winter season. Management for early-winter habitat will require retention of some commercially significant forest across extensive areas, both near the subalpine forest – subalpine parkland ecotone and lower in the subalpine forest.


2007 ◽  
Vol 37 (6) ◽  
pp. 1082-1092 ◽  
Author(s):  
Robert Serrouya ◽  
Bruce N. McLellan ◽  
John P. Flaa

Mountain caribou, an endangered ecotype of woodland caribou ( Rangifer tarandus caribou Gmelin, 1788), live in late-successional coniferous forests where they depend largely on arboreal lichens as winter forage. While radio-telemetry has been used to understand caribou habitat selection patterns at broad scales among and within populations, here we use snow-trailing in old cedar–hemlock forests between 1992 and 2003 to study three finer scales of habitat selection: (1) forest stands used for foraging from available forest stands (among-stand selection), (2) foraging paths within selected stands relative to random paths within those same stands (within-stand selection), and (3) feeding items along foraging paths. Relative to stands that were available on the landscape, caribou selected stands with more windthrown trees and standing snags. Within stands, caribou selected paths that had more live trees, snags with branches and bark, and trees with larger diameters. All of these habitat attributes facilitate access to arboreal lichen. Of the potential forage items encountered along foraging paths, caribou preferred to feed on windthrown trees, lichen litterfall and falsebox ( Paxistima myrsinites (Pursh.) Raf.). Our results go beyond telemetry studies by revealing that not all old forests are of equal value to mountain caribou. Prioritization among old stands will help refine conservation measures, as will silvicultural systems that incorporate key habitat attributes to maintain winter habitat in low-elevation cedar–hemlock ecosystems.


Rangifer ◽  
1991 ◽  
Vol 11 (4) ◽  
pp. 108 ◽  
Author(s):  
Gerald D. Racey ◽  
K. Abraham ◽  
W. R. Darby ◽  
H. R. Timmermann ◽  
Q. Day

Ontario is in the process of developing a strategy to improve the likelihood of woodland caribou (Rangifer tarandus caribou) and the forest industry coexisting in the province. This strategy is described within a set of proposed Timber Management Guidelines for the Provision of Woodland Caribou Habitat. The proposed guidelines advocate managing for large blocks of suitable winter habitat across caribou range, large cutovers to regenerate caribou winter habitat and the protection of traditional calving areas and travel routes. Summer habitat will be provided by the resulting mosaic. The forest industry can provide a sustainable supply of woodland caribou habitat that was traditionally maintained by wildfire.


2013 ◽  
Vol 40 (3) ◽  
pp. 250 ◽  
Author(s):  
A. David M. Latham ◽  
M. Cecilia Latham ◽  
Mark S. Boyce ◽  
Stan Boutin

Context Woodland caribou (Rangifer tarandus caribou) populations have declined across most of North America. Wolf (Canis lupus) predation on adults is partially responsible for declines; however, caribou declines also can be attributed to low calf survival. Wolves and invading coyotes (C. latrans) may contribute to mortality of calves. Aim We assessed wolf and coyote food habits and population and individual level selection for caribou-preferred habitats (bogs and fens) during the caribou calving season (15 April to 30 June) in north-eastern Alberta, Canada, to determine what role these predators might play as a mortality factor for caribou calves. Methods We deployed global positioning system and very high-frequency (VHF) radio-collars on 32 wolves and nine coyotes in January 2006 – January 2008, and VHF collars on 42 adult female caribou individuals in 2003–08. We assessed wolf and coyote habitat selection using used-available resource-selection functions, and spatial overlap of wolves and coyotes with caribou using logistic regression to estimate coefficients for latent selection-difference functions. We collected and analysed scats to assess wolf and coyote food habits. Key results Wolves generally avoided caribou-preferred habitats, particularly bogs. Most coyotes selected caribou-preferred habitats (bogs and/or fens); however, relative to caribou, they were found closer to upland forests. Hair from adult and calf caribou was uncommon in wolf and coyote diet and caribou is likely to be an uncommon alternative prey for these predators. Conclusions We found that >25% of wolf packs and most coyotes selected caribou-preferred habitats during the calving season. Although caribou was not an important prey, limited secondary predation, by these predators and black bears (Ursus americanus), on adult and calf caribou is likely to be contributing to caribou population declines. Implications We caution that predation on caribou is likely to escalate as coyotes expand into this region and increasing human disturbance continues to create habitat for white-tailed deer (Odocoileus virginianus), which is an important prey for both wolves and coyotes.


Sign in / Sign up

Export Citation Format

Share Document