scholarly journals Baby MIND Readout Electronics Architecture for Accelerator Neutrino Particle Physics Detectors Employing Silicon Photomultipliers

Author(s):  
O. Basille ◽  
A. Blondel ◽  
P. Benoit ◽  
M. Bogomilov ◽  
S. Bron ◽  
...  
2020 ◽  
Vol 225 ◽  
pp. 03008
Author(s):  
C.D.R. Azevedo ◽  
A. Baeza ◽  
M. Brás ◽  
T. Cámara ◽  
C. Cerna ◽  
...  

Tritium is released abundantly to the environment by nuclear power plants (NPP), as a product of neutron capture by hydrogen and deuterium. In normal running conditions, released cooling waters may contain levels of tritium close to or even larger than the maximum authorised limit for human consumption (drinking and irrigation). The European Council Directive 2013/51/Euratom requires a maximum level of tritium in water for human consumption lower than 100 Bq=L. Current monitoring of tritium activity in water by liquid scintillating method takes about two days and can only be carried out in a dedicated laboratory. This system is not appropriate for real time monitoring. At present, there exists no available detector device with enough sensitivity to monitor waters for human consumption with high enough sensitivity. The goal of the TRITIUM project is to build a tritium monitor capable to measure tritium activities with detection limit close to 100Bq=L, using instrumentation technique developed in recent years for Nuclear and Particle Physics, such as scintillating fibres and silicon photomultipliers (SiPM). In this paper the current status of the TRITIUM project is presented and he results of first prototypes are discussed. A detector system based on scintillating fibers read out either photomultiplier tubes (PMTs) or silicon photomultiplier (SiPM) arrays is under development and will be installed in the vicinity of Almaraz nuclear power plant (Cáceres, Spain) by the fourth term of 2019.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2013 ◽  
Vol 221 (3) ◽  
pp. 190-200 ◽  
Author(s):  
Jörg-Tobias Kuhn ◽  
Thomas Kiefer

Several techniques have been developed in recent years to generate optimal large-scale assessments (LSAs) of student achievement. These techniques often represent a blend of procedures from such diverse fields as experimental design, combinatorial optimization, particle physics, or neural networks. However, despite the theoretical advances in the field, there still exists a surprising scarcity of well-documented test designs in which all factors that have guided design decisions are explicitly and clearly communicated. This paper therefore has two goals. First, a brief summary of relevant key terms, as well as experimental designs and automated test assembly routines in LSA, is given. Second, conceptual and methodological steps in designing the assessment of the Austrian educational standards in mathematics are described in detail. The test design was generated using a two-step procedure, starting at the item block level and continuing at the item level. Initially, a partially balanced incomplete item block design was generated using simulated annealing, whereas in a second step, items were assigned to the item blocks using mixed-integer linear optimization in combination with a shadow-test approach.


1998 ◽  
Vol 08 (PR3) ◽  
pp. Pr3-181-Pr3-184 ◽  
Author(s):  
S. Wang ◽  
D.-H. Gwo ◽  
K. A. Bower ◽  
L. W. Huff ◽  
R. K. Kirschman ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document