First-principles calculations for Li adatom diffusion on a graphene surface through a V6 defect partly terminated by hydrogen atoms

2019 ◽  
Vol 58 (SB) ◽  
pp. SBBH07 ◽  
Author(s):  
Takazumi Kawai ◽  
Kento Shiota
Author(s):  
Jing-hua Guo ◽  
Jin-Xiang Liu ◽  
Hongbo Wang ◽  
Haiying Liu ◽  
Gang Chen

In this work, combining the first-principles calculations with kinetic Monte Carlo (KMC) simulations, we constructed an irregular carbon bridge on the graphene surface and explored the process of H migration...


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 322
Author(s):  
Zhengxiong Su ◽  
Sheng Wang ◽  
Chenyang Lu ◽  
Qing Peng

Hydrogen plays a significant role in the microstructure evolution and macroscopic deformation of materials, causing swelling and surface blistering to reduce service life. In the present work, the atomistic mechanisms of hydrogen bubble nucleation in vanadium were studied by first-principles calculations. The interstitial hydrogen atoms cannot form significant bound states with other hydrogen atoms in bulk vanadium, which explains the absence of hydrogen self-clustering from the experiments. To find the possible origin of hydrogen bubble in vanadium, we explored the minimum sizes of a vacancy cluster in vanadium for the formation of hydrogen molecule. We show that a freestanding hydrogen molecule can form and remain relatively stable in the center of a 54-hydrogen atom saturated 27-vacancy cluster.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Guoliang Yu ◽  
Wence Ding ◽  
Xianbo Xiao ◽  
Xiaobo Li ◽  
Guanghui Zhou

Abstract We propose a planar model heterojunction based on α-borophene nanoribbons and study its electronic transport properties. We respectively consider three types of heterojunctions. Each type consists of two zigzag-edge α-borophene nanoribbons (Z αBNR), one is metallic with unpassivated or passivated edges by a hydrogen atom (1H-Z αBNR) and the other is semiconducting with the edge passivated by two hydrogen atoms (2H-Z αBNR) or a single nitrogen atom (N-Z αBNR). Using the first-principles calculations combined with the nonequilibrium Green’s function, we observe that the rectifying performance depends strongly on the atomic structural details of a junction. Specifically, the rectification ratio of the junction is almost unchanged when its left metallic ribbon changes from ZBNR to 1H-Z αBNR. However, its ratio increases from 120 to 240 when the right semiconducting one varies from 2H-Z αBNR to N-Z αBNR. This rectification effect can be explained microscopically by the matching degree the electronic bands between two parts of a junction. Our findings imply that the borophene-based heterojunctions may have potential applications in rectification nano-devices.


2012 ◽  
Vol 602-604 ◽  
pp. 870-873 ◽  
Author(s):  
Wei Zhao ◽  
Qing Yuan Meng

The adsorption of methane (CH4) molecule on the pristine and Al-doped (4, 8) graphene was investigated via the first-principles calculations. The results demonstrated that, in comparison to the adsorption of a CH4molecule on the pristine graphene sheet, a relatively stronger adsorption was observed between the CH4molecule and Al-doped graphene with a shorter adsorption distance, larger binding energy and more charge-transfer from the graphene surface to the CH4molecule. Therefore, the Al-doped graphene can be expected to be a novel sensor for the detection of CH4molecules in future applications.


RSC Advances ◽  
2018 ◽  
Vol 8 (70) ◽  
pp. 39976-39982 ◽  
Author(s):  
E. Unsal ◽  
F. Iyikanat ◽  
H. Sahin ◽  
R. T. Senger

Herein, we carried out first-principles calculations based on density functional theory to investigate the effects of surface functionalization with hydrogen atoms on structural, dynamical and electronic properties of Cu2Si monolayer.


1997 ◽  
Vol 55 (20) ◽  
pp. 13783-13788 ◽  
Author(s):  
Ayumi Yokozawa ◽  
Yoshiyuki Miyamoto

2017 ◽  
Vol 95 (3) ◽  
Author(s):  
E. Kim ◽  
A. Safavi-Naini ◽  
D. A. Hite ◽  
K. S. McKay ◽  
D. P. Pappas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document