Compact acoustic metalens with sinusoidal sub-channels for directional far-field sound beams

2019 ◽  
Vol 12 (8) ◽  
pp. 087002
Author(s):  
Fuxi Zhang ◽  
Edmon Perkins ◽  
Shiming Wang ◽  
George T. Flowers ◽  
Robert N. Dean
Keyword(s):  
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Meixia Chen ◽  
Cong Zhang ◽  
Xiangfan Tao ◽  
Naiqi Deng

This paper studies the vibrational behavior and far-field sound radiation of a submerged stiffened conical shell at low frequencies. The solution for the dynamic response of the conical shell is presented in the form of a power series. A smeared approach is used to model the ring stiffeners. Fluid loading is taken into account by dividing the conical shell into narrow strips which are considered to be local cylindrical shells. The far-field sound pressure is solved by the Element Radiation Superposition Method. Excitations in two directions are considered to simulate the loading on the surface of the conical shell. These excitations are applied along the generator and normal to the surface of the conical shell. The contributions from the individual circumferential modes on the structural responses of the conical shell are studied. The effects of the external fluid loading and stiffeners are discussed. The results from the analytical models are validated by numerical results from a fully coupled finite element/boundary element model.


2019 ◽  
Vol 863 ◽  
pp. 969-993 ◽  
Author(s):  
Marcus H. Wong ◽  
Peter Jordan ◽  
Damon R. Honnery ◽  
Daniel Edgington-Mitchell

Motivated by the success of wavepackets in modelling the noise from subsonic and perfectly expanded supersonic jets, we apply the wavepacket model to imperfectly expanded supersonic jets. Recent studies with subsonic jets have demonstrated the importance of capturing the ‘jitter’ of wavepackets in order to correctly predict the intensity of far-field sound. Wavepacket jitter may be statistically represented using a two-point coherence function; accurate prediction of noise requires identification of this coherence function. Following the analysis of Cavalieri & Agarwal (J. Fluid Mech., vol. 748, 2014. pp. 399–415), we extend their methodology to model the acoustic sources of broadband shock-associated noise in imperfectly expanded supersonic jets using cross-spectral densities of the turbulent and shock-cell quantities. The aim is to determine the relationship between wavepacket coherence-decay and far-field broadband shock-associated noise, using the model as a vehicle to explore the flow mechanisms at work. Unlike the subsonic case where inclusion of coherence decay amplifies the sound pressure level over the whole acoustic spectrum, we find that it does not play such a critical role in determining the peak sound amplitude for shock-cell noise. When higher-order shock-cell modes are used to reconstruct the acoustic spectrum at higher frequencies, however, the inclusion of a jittering wavepacket is necessary. These results suggest that the requirement for coherence decay identified in prior broadband shock-associated noise (BBSAN) models is in reality the statistical signature of jittering wavepackets. The results from this modelling approach suggest that nonlinear jittering effects of wavepackets need to be included in dynamic models for broadband shock-associated noise.


2009 ◽  
Vol 125 (3) ◽  
pp. 1444-1455 ◽  
Author(s):  
Ronald M. Aarts ◽  
Augustus J. E. M. Janssen

1998 ◽  
Vol 103 (1) ◽  
pp. 83-98 ◽  
Author(s):  
Omar M. Knio ◽  
Lu Ting ◽  
Rupert Klein
Keyword(s):  

2014 ◽  
Vol 86 ◽  
pp. 126-137 ◽  
Author(s):  
Hassen Trabelsi ◽  
Majdi Abid ◽  
Mohamed Taktak ◽  
Tahar Fakhfakh ◽  
Mohamed Haddar
Keyword(s):  

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
T. Y. Li ◽  
P. Wang ◽  
X. Zhu ◽  
J. Yang ◽  
W. B. Ye

A sound–structure interaction model is established to study the vibroacoustic characteristics of a semisubmerged cylindrical shell using the wave propagation approach (WPA). The fluid free surface effect is taken into account by satisfying the sound pressure release condition. Then, the far-field sound pressure is predicted with shell's vibration response using the stationary phase method. Modal coupling effect arises due to the presence of the fluid free surface. New approaches are proposed to handle this problem, i.e., diagonal coupling acoustic radiation model (DCARM) and column coupling acoustic radiation model (CCARM). New approaches are proved to be able to deal with the modal coupling problem efficiently with a good accuracy at a significantly reduced computational cost. Numerical results also indicate that the sound radiation characteristics of a semisubmerged cylindrical shell are quite different from those from the shell fully submerged in fluid. But the far-field sound pressure of a semisubmerged shell fluctuates around that from the shell ideally submerged in fluid. These new approaches can also be used to study the vibroacoustic problems of cylindrical shells partially coupled with fluid.


1986 ◽  
Vol 29 (252) ◽  
pp. 1874-1880 ◽  
Author(s):  
Kiyohiko UMEZAWA ◽  
Haruo HOUJOH ◽  
Tadashi KITANO

Sign in / Sign up

Export Citation Format

Share Document